scholarly journals Distance and mass of the M 104 (Sombrero) group

2020 ◽  
Vol 643 ◽  
pp. A124
Author(s):  
Igor D. Karachentsev ◽  
Lidia N. Makarova ◽  
R. Brent Tully ◽  
Gagandeep S. Anand ◽  
Luca Rizzi ◽  
...  

Aims. Distances and radial velocities of galaxies in the vicinity of the luminous early-type galaxy M 104 (Sombrero) are used to derive its dark matter mass. Methods. Two dwarf galaxies: UGCA 307 and KKSG 30 situated near M 104 were observed with the Advanced Camera for Surveys on the Hubble Space Telescope. The distances 9.03−0.51+0.84 Mpc (UGCA 307) and 9.72−0.41+0.44 Mpc (KKSG 30) were determined using the tip of the red giant branch method. These distances are consistent with the dwarf galaxies being satellites of Sombrero. Results. Using radial velocities and projected separations of UGCA 307, KKSG 30, and a third galaxy with an accurate distance (KKSG 29), as well as 12 other assumed companions with less accurate distances, the total mass of M 104 is estimated to be (1.55 ± 0.49) × 1013 M⊙. At the K-band luminosity of the Sombrero galaxy of 2.4 × 1011 L⊙, its total mass-to-luminosity ratio is MT/LK = (65 ± 20) M⊙/L⊙, which is about three times higher than that of luminous bulgeless galaxies.

2008 ◽  
pp. 1-7
Author(s):  
S. Samurovic ◽  
M.M. Cirkovic

In this paper the problem of the total mass and the total mass-to-light ratio of the early-type galaxy NGC 4649 (M60) is analyzed. Use is made of two independent techniques: the X-ray methodology which is based on the temperature of the X-ray halo of NGC 4649 and the tracer mass estimator (TME) which uses globular clusters (GCs) observed in this galaxy. The mass is calculated in Newtonian and Modified Newtonian Dynamics (MOND) approaches and it is found that inside 3 effective radii (Re ) there is no need for large amounts of dark matter. Beyond 3Re the dark matter starts to play important dynamical role. The possible reasons for the discrepancy between the estimates of the total mass based on X-rays and TME in the outer regions of NGC 4649 are also discussed.


2014 ◽  
Vol 10 (S309) ◽  
pp. 297-297
Author(s):  
Flor Allaert

AbstractEach component of a galaxy plays its own unique role in regulating the galaxy's evolution. In order to understand how galaxies form and evolve, it is therefore crucial to study the distribution and properties of each of the various components, and the links between them, both radially and vertically. The latter is only possible in edge-on systems. We present the HEROES project, which aims to investigate the 3D structure of the interstellar gas, dust, stars and dark matter in a sample of 7 massive early-type spiral galaxies based on a multi-wavelength data set including optical, NIR, FIR and radio data.


2012 ◽  
Vol 752 (2) ◽  
pp. 163 ◽  
Author(s):  
A. Sonnenfeld ◽  
T. Treu ◽  
R. Gavazzi ◽  
P. J. Marshall ◽  
M. W. Auger ◽  
...  

2007 ◽  
Vol 3 (S246) ◽  
pp. 377-386 ◽  
Author(s):  
Patrick Côté ◽  
Laura Ferrarese ◽  
Andrés Jordán ◽  
John P. Blakeslee ◽  
Chin-Wei Chen ◽  
...  

AbstractWe present a brief update on the ACS Virgo and Fornax Cluster Surveys —Hubble Space Telescopeprograms to obtainACSimaging for 143 early-type galaxies in the two galaxy clusters nearest to the Milky Way. We summarize a selection of science highlights from the surveys as including new results on the central structure of early-type galaxies, the apparent continuity of photometric and structural parameters between dwarf and giant galaxies, and the properties of globular clusters, diffuse star clusters and ultra-compact dwarf galaxies.


2009 ◽  
Vol 5 (H15) ◽  
pp. 74-74
Author(s):  
L. V. E. Koopmans

AbstractStrong gravitational lensing and stellar dynamics provide two complementary methods in the study of the mass distribution of dark matter in galaxies out to redshift of unity. They are particularly powerful in the determination of the total mass and the density profile of mass early-type galaxies on kpc to tens of kpc scales, and also reveal the presence of mass-substructure on sub-kpc scale. I will shortly discuss these topics in this review.


2014 ◽  
pp. 29-36 ◽  
Author(s):  
S. Samurovic ◽  
A. Vudragovic ◽  
M. Jovanovic ◽  
M.M. Cirkovic

In this paper we analyze the kinematics and dynamics of the nearby early-type galaxy NGC 821 based on its globular clusters (GCs) and planetary nebulae (PNe). We use PNe and GCs to extract the kinematics of NGC 821 which is then used for the dynamical modelling based on the Jeans equation. We apply the Jeans equation using the Newtonian mass-follows-light approach assuming constant mass-to-light ratio and find that using such an approach we can successfully fit the kinematic data. The inferred constant mass-to-light ratio, 4:2 < M=LB < 12:4 present throughout the whole galaxy, implies the lack of significant amount of dark matter. We also used three different MOND approaches and found that we can fit the kinematic data without the need for additional, dark, component.


2012 ◽  
Vol 10 (H16) ◽  
pp. 335-335
Author(s):  
E. Toloba ◽  
A. Boselli ◽  
R. Peletier ◽  
J. Gorgas

AbstractWhat happens to dwarf galaxies as they enter the cluster potential well is one of the main unknowns in studies of galaxy evolution. Several evidence suggests that late-type galaxies enter the cluster and are transformed to dwarf early-type galaxies (dEs). We study the Virgo cluster to understand which mechanisms are involved in this transformation. We find that the dEs in the outer parts of Virgo have rotation curves with shapes and amplitudes similar to late-type galaxies of the same luminosity (Fig. 1). These dEs are rotationally supported, have disky isophotes, and younger ages than those dEs in the center of Virgo, which are pressure supported, often have boxy isophotes and are older (Fig. 1). Ram pressure stripping, thus, explains the properties of the dEs located in the outskirts of Virgo. However, the dEs in the central cluster regions, which have lost their angular momentum, must have suffered a more violent transformation. A combination of ram pressure stripping and harassment is not enough to remove the rotation and the spiral/disky structures of these galaxies. We find that on the the Faber-Jackson and the Fundamental Plane relations dEs deviate from the trends of massive elliptical galaxies towards the position of dark matter dominated systems such as the dwarf spheroidal satellites of the Milky Way and M31. Both, rotationally and pressure supported dEs, however, populate the same region in these diagrams. This indicates that dEs have a non-negligible dark matter fraction within their half light radius.


Sign in / Sign up

Export Citation Format

Share Document