scholarly journals The MURALES survey

2020 ◽  
Vol 645 ◽  
pp. A12
Author(s):  
B. Balmaverde ◽  
A. Capetti ◽  
A. Marconi ◽  
G. Venturi ◽  
M. Chiaberge ◽  
...  

We present the final observations of a complete sample of 37 radio galaxies from the Third Cambridge Catalogue (3C) with redshift < 0.3 and declination < 20° obtained with the VLT/MUSE optical integral field spectrograph. These data were obtained as part of the MUse RAdio Loud Emission line Snapshot (MURALES) survey with the main goal of exploring the AGN feedback process in the most powerful radio sources. We present the data analysis and, for each source, the resulting emission line images and the 2D gas velocity field. Thanks to the unprecedented depth these observations reveal emission line regions (ELRs) extending several tens of kiloparsec in most objects. The gas velocity shows ordered rotation in 25 galaxies, but in several sources it is highly complex. We find that the 3C sources show a connection between radio morphology and emission line properties. In the ten FR I sources the line emission region is generally compact, only a few kpc in size; only in one case does it exceed the size of the host. Conversely, all but two of the FR II galaxies show large-scale structures of ionized gas. The median extent is 16 kpc with the maximum reaching a size of ∼80 kpc. There are no apparent differences in extent or strength between the ELR properties of the FR II sources of high and low gas excitation. We confirm that the previous optical identification of 3C 258 is incorrect: this radio source is likely associated with a quasi-stellar object at z ∼ 1.54.

2019 ◽  
Vol 632 ◽  
pp. A124
Author(s):  
B. Balmaverde ◽  
A. Capetti ◽  
A. Marconi ◽  
G. Venturi ◽  
M. Chiaberge ◽  
...  

We present observations of a complete sub-sample of 20 radio galaxies from the Third Cambridge Catalog (3C) with redshift < 0.3 obtained from VLT/MUSE optical integral field spectrograph. These data have been obtained as part of the survey MURALES (a MUse RAdio Loud Emission line Snapshot survey) with the main goal of exploring the active galactic nuclei (AGN) feedback process in a sizeable sample of the most powerful radio sources at low redshift. We present the data analysis and, for each source, the resulting emission line images and the 2D gas velocity field. Thanks to their unprecedented depth (the median 3σ surface brightness limit in the emission line maps is 6 × 10−18 erg s−1 cm−2 arcsec−2), these observations reveal emission line structures extending to several tens of kiloparsec in most objects. In nine sources the gas velocity shows ordered rotation, but in the other cases it is highly complex. 3C sources show a connection between radio morphology and emission line properties. Whereas, in three of the four Fanaroff and Riley Class I radio galaxies (FR Is), the line emission regions are compact, ∼1 kpc in size; in all but one of the Class II radiogalaxies FR IIs, we detected large scale structures of ionized gas with a median extent of 17 kpc. Among the FR IIs, those of high and low excitation show extended gas structures with similar morphological properties, suggesting that they both inhabit regions characterized by a rich gaseous environment on kpc scale.


Author(s):  
A. Zanella ◽  
C. Zanoni ◽  
F. Arrigoni-Battaia ◽  
A. Rubin ◽  
A. F. Pala ◽  
...  

AbstractWith this paper we participate to the call for ideas issued by the European Space Agency to define the Science Program and plan for space missions from 2035 to 2050. In particular we present five science cases where major advancements can be achieved thanks to space-based spectroscopic observations at ultraviolet (UV) wavelengths. We discuss the possibility to (1) unveil the large-scale structures and cosmic web in emission at redshift $\lesssim 1.7$ ≲ 1.7 ; (2) study the exchange of baryons between galaxies and their surroundings to understand the contribution of the circumgalactic gas to the evolution and angular-momentum build-up of galaxies; (3) constrain the efficiency of ram-pressure stripping in removing gas from galaxies and its role in quenching star formation; (4) characterize the progenitor population of core-collapse supernovae to reveal the explosion mechanisms of stars; (5) target accreting white dwarfs in globular clusters to determine their evolution and fate. These science themes can be addressed thanks to UV (wavelength range $\lambda \sim 90 - 350$ λ ∼ 90 − 350 nm) observations carried out with a panoramic integral field spectrograph (field of view $\sim \!1 \times 1$ ∼ 1 × 1 arcmin2), and medium spectral (R = 4000) and spatial ($\sim \!1^{\prime \prime } - 3^{\prime \prime }$ ∼ 1 ′ ′ − 3 ′ ′ ) resolution. Such a UV-optimized instrument will be unique in the coming years, when most of the new large facilities such as the Extremely Large Telescope and the James Webb Space Telescope are optimized for infrared wavelengths.


2014 ◽  
Vol 10 (S309) ◽  
pp. 339-339
Author(s):  
Rogemar A. Riffel ◽  
Thaisa Storchi-Bergmann ◽  
Rogério Riffel

AbstractWe present two-dimensional (2D) near-infrared spectra of the inner 300×300 pc2 of the Seyfert 2 galaxy NGC 5929 at a spatial resolution of ~20 pc obtained with the Gemini Near infrared Integral Field Spectrograph (NIFS). We present 2D maps for the emission line flux distributions and kinematics and report the discovery of a linear structure ~300 pc in extent and of ~50 pc in width oriented perpendicular to the radio jet, showing broadened emission-line profiles.While over most of the field the emission-line profiles have full-widths-at-half-maximum (FWHM) of ~210 km/s, at a linear structure perpendicular do the radio jet the emission-line FWHMs are twice this value, and are due to two velocity components, one blueshifted and the other redshifted relative to the systemic velocity. We attribute these velocities to an outflow from the nucleus which is launched perpendicular to the radio jet. We reported the detection of this peculiar outflow in Riffel, Storchi-Bergmann & Riffel (2014a), where more details of the analysis can be found. Since, NGC 5929 has a Type 2 nucleus, this detection implies that: (1) both ionizing radiation and relativistic particles are escaping through holes in the torus perpendicular to the radio jet; and/or (2) the torus is also outflowing, as proposed by recent models of tori as winds from the outer parts of an accretion flow; or (3) the torus is absent in NGC 5929.At other locations the gas kinematics is dominated by rotation in a disk, although some evidences of interaction of the radio jet with the emitting gas are seen as a broadening of the line profiles at the locations of the radio structures.The flux distributions for the [P ii], [Fe ii], H i and H2 emission lines show that the line emission is more extended along the PA = 60/240^, extending to up to 1.5” to both sides of the nucleus, while to the perpendicular direction (PA = -30/150^) the emission is extended to 0.7” from the nucleus. The flux distributions of all emission lines show a good correlation with radio the radio structures, with the two peak of emission associated to the soutwestern and northeastern radio knots. Some differences are observed among distinct emission lines. While the [Fe ii] and H2 emission peak at the location of the soutwestern radio structure at 0.6” from the nucleus, the H i recombination lines present the their highest fluxes at the location of the northeastern radio hotspot at 0.5” from the nucleus. Another difference is that the H2 emission is less collimated than that for other lines, being more extended perpendicularly to the radio jet. A detailed analysis of the line emission and kinematics will be presented in Riffel, Storchi-Bergmann & Riffel (2014b).


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


2015 ◽  
Vol 12 (108) ◽  
pp. 20150044 ◽  
Author(s):  
Dervis C. Vural ◽  
Alexander Isakov ◽  
L. Mahadevan

Starting with Darwin, biologists have asked how populations evolve from a low fitness state that is evolutionarily stable to a high fitness state that is not. Specifically of interest is the emergence of cooperation and multicellularity where the fitness of individuals often appears in conflict with that of the population. Theories of social evolution and evolutionary game theory have produced a number of fruitful results employing two-state two-body frameworks. In this study, we depart from this tradition and instead consider a multi-player, multi-state evolutionary game, in which the fitness of an agent is determined by its relationship to an arbitrary number of other agents. We show that populations organize themselves in one of four distinct phases of interdependence depending on one parameter, selection strength. Some of these phases involve the formation of specialized large-scale structures. We then describe how the evolution of independence can be manipulated through various external perturbations.


Sign in / Sign up

Export Citation Format

Share Document