scholarly journals Detectability of continuous gravitational waves from isolated neutron stars in the Milky Way. The population synthesis approach

Author(s):  
M. Cieslar ◽  
T. Bulik ◽  
M. Curyło ◽  
M. Sieniawska ◽  
N. Singh ◽  
...  
2019 ◽  
Vol 488 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Fabian Gittins ◽  
Nils Andersson

ABSTRACT The fastest-spinning neutron stars in low-mass X-ray binaries, despite having undergone millions of years of accretion, have been observed to spin well below the Keplerian break-up frequency. We simulate the spin evolution of synthetic populations of accreting neutron stars in order to assess whether gravitational waves can explain this behaviour and provide the distribution of spins that is observed. We model both persistent and transient accretion and consider two gravitational-wave-production mechanisms that could be present in these systems: thermal mountains and unstable rmodes. We consider the case of no gravitational-wave emission and observe that this does not match well with observation. We find evidence for gravitational waves being able to provide the observed spin distribution; the most promising mechanisms being a permanent quadrupole, thermal mountains, and unstable r modes. However, based on the resultant distributions alone, it is difficult to distinguish between the competing mechanisms.


2021 ◽  
Vol 502 (1) ◽  
pp. L55-L60
Author(s):  
Valeriya Korol ◽  
Vasily Belokurov ◽  
Christopher J Moore ◽  
Silvia Toonen

ABSTRACT White dwarf stars are a well-established tool for studying Galactic stellar populations. Two white dwarfs in a tight binary system offer us an additional messenger – gravitational waves – for exploring the Milky Way and its immediate surroundings. Gravitational waves produced by double white dwarf (DWD) binaries can be detected by the future Laser Interferometer Space Antenna (LISA). Numerous and widespread DWDs have the potential to probe shapes, masses, and formation histories of the stellar populations in the Galactic neighbourhood. In this work we outline a method for estimating the total stellar mass of Milky Way satellite galaxies based on the number of DWDs detected by LISA. To constrain the mass we perform a Bayesian inference using binary population synthesis models and considering the number of detected DWDs associated with the satellite and the measured distance to the satellite as the only inputs. Based on a fiducial binary population synthesis model we find that for large satellites the stellar masses can be recovered to within (1) a factor 2 if the star formation history (SFH) is known and (2) an order of magnitude when marginalizing over different SFH models. For smaller satellites we can place upper limits on their stellar mass. Gravitational wave observations can provide mass measurements for large satellites that are comparable, and in some cases more precise, than standard electromagnetic observations.


2015 ◽  
Vol 92 (10) ◽  
Author(s):  
Katerina Chatziioannou ◽  
Kent Yagi ◽  
Antoine Klein ◽  
Neil Cornish ◽  
Nicolás Yunes

2011 ◽  
Vol 7 (S281) ◽  
pp. 205-208
Author(s):  
Bo Wang ◽  
Zhanwen Han

AbstractEmploying Eggleton's stellar evolution code and assuming optically thick winds, we systematically studied the He star donor channel of Type Ia supernovae (SNe Ia), in which a carbon-oxygen white dwarf (WD) accretes material from a He main-sequence star or a He subgiant to increase its mass to the Chandrasekhar mass. We mapped out the initial parameters for producing SNe Ia in the orbital period–secondary mass plane for various WD masses from this channel. Based on a detailed binary population synthesis approach, we find that this channel can produce SNe Ia with short delay times (~100 Myr) implied by recent observations. We derived many properties of the surviving companions of this channel after SN explosion, which can be tested by future observations. We also find that the surviving companions from the SN explosion scenario have a high spatial velocity (>400 km/s), which could be an alternative origin for hypervelocity stars (HVSs), especially for HVSs such as US 708.


2018 ◽  
Vol 619 ◽  
pp. A174 ◽  
Author(s):  
N. Brügger ◽  
Y. Alibert ◽  
S. Ataiee ◽  
W. Benz

Context. One of the main scenarios of planet formation is the core accretion model where a massive core forms first and then accretes a gaseous envelope. This core forms by accreting solids, either planetesimals or pebbles. A key constraint in this model is that the accretion of gas must proceed before the dissipation of the gas disc. Classical planetesimal accretion scenarios predict that the time needed to form a giant planet’s core is much longer than the time needed to dissipate the disc. This difficulty led to the development of another accretion scenario, in which cores grow by accretion of pebbles, which are much smaller and thus more easily accreted, leading to more rapid formation. Aims. The aim of this paper is to compare our updated pebble-based planet formation model with observations, in particular the well-studied metallicity effect. Methods. We adopt the Bitsch et al. (2015a, A&A, 575, A28) disc model and the Bitsch et al. (2015b, A&A, 582, A112) pebble model and use a population synthesis approach to compare the formed planets with observations. Results. We find that keeping the same parameters as in Bitsch et al. (2015b, A&A, 582, A112) leads to no planet growth due to a computation mistake in the pebble flux (2018b). Indeed a large fraction of the heavy elements should be put into pebbles (Zpeb∕Ztot = 0.9) in order to form massive planets using this approach. The resulting mass functions show a huge amount of giants and a lack of Neptune-mass planets, which are abundant according to observations. To overcome this issue we include the computation of the internal structure for the planetary atmosphere in our model. This leads to the formation of Neptune-mass planets but no observable giants. Furthermore, reducing the opacity of the planetary envelope more closely matches observations. Conclusions. We conclude that modelling the internal structure for the planetary atmosphere is necessary to reproduce observations.


2018 ◽  
Vol 857 (1) ◽  
pp. 38 ◽  
Author(s):  
A. Miguel Holgado ◽  
Paul M. Ricker ◽  
E. A. Huerta

2002 ◽  
Vol 567 (1) ◽  
pp. L63-L66 ◽  
Author(s):  
Krzysztof Belczynski ◽  
Tomasz Bulik ◽  
Włodzimierz Kluźniak

2017 ◽  
Vol 606 ◽  
pp. A97 ◽  
Author(s):  
G. Nandakumar ◽  
M. Schultheis ◽  
M. Hayden ◽  
A. Rojas-Arriagada ◽  
G. Kordopatis ◽  
...  

Context. Large spectroscopic Galactic surveys imply a selection function in the way they performed their target selection. Aims. We investigate here the effect of the selection function on the metallicity distribution function (MDF) and on the vertical metallicity gradient by studying similar lines of sight using four different spectroscopic surveys (APOGEE, LAMOST, RAVE, and Gaia-ESO), which have different targeting strategies and therefore different selection functions. Methods. We use common fields between the spectroscopic surveys of APOGEE, LAMOST, RAVE (ALR) and APOGEE, RAVE, Gaia-ESO (AGR) and use two stellar population synthesis models, GALAXIA and TRILEGAL, to create mock fields for each survey. We apply the selection function in the form of colour and magnitude cuts of the respective survey to the mock fields to replicate the observed source sample. We make a basic comparison between the models to check which best reproduces the observed sample distribution. We carry out a quantitative comparison between the synthetic MDF from the mock catalogues using both models to understand the effect of the selection function on the MDF and on the vertical metallicity gradient. Results. Using both models, we find a negligible effect of the selection function on the MDF for APOGEE, LAMOST, and RAVE. We find a negligible selection function effect on the vertical metallicity gradients as well, though GALAXIA and TRILEGAL have steeper and shallower slopes, respectively, than the observed gradient. After applying correction terms on the metallicities of RAVE and LAMOST with respect to our reference APOGEE sample, our observed vertical metallicity gradients between the four surveys are consistent within 1σ. We also find consistent gradient for the combined sample of all surveys in ALR and AGR. We estimated a mean vertical metallicity gradient of − 0.241 ± 0.028 dex kpc-1. There is a significant scatter in the estimated gradients in the literature, but our estimates are within their ranges. Conclusions. We have shown that there is a negligible selection function effect on the MDF and the vertical metallicity gradients for APOGEE, RAVE, and LAMOST using two stellar population synthesis models. Therefore, it is indeed possible to combine common fields of different surveys in studies using MDF and metallicity gradients provided their metallicities are brought to the same scale.


Sign in / Sign up

Export Citation Format

Share Document