scholarly journals Population synthesis of accreting neutron stars emitting gravitational waves

2019 ◽  
Vol 488 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Fabian Gittins ◽  
Nils Andersson

ABSTRACT The fastest-spinning neutron stars in low-mass X-ray binaries, despite having undergone millions of years of accretion, have been observed to spin well below the Keplerian break-up frequency. We simulate the spin evolution of synthetic populations of accreting neutron stars in order to assess whether gravitational waves can explain this behaviour and provide the distribution of spins that is observed. We model both persistent and transient accretion and consider two gravitational-wave-production mechanisms that could be present in these systems: thermal mountains and unstable rmodes. We consider the case of no gravitational-wave emission and observe that this does not match well with observation. We find evidence for gravitational waves being able to provide the observed spin distribution; the most promising mechanisms being a permanent quadrupole, thermal mountains, and unstable r modes. However, based on the resultant distributions alone, it is difficult to distinguish between the competing mechanisms.

2004 ◽  
Vol 13 (07) ◽  
pp. 1293-1296 ◽  
Author(s):  
GUILHERME F. MARRANGHELLO ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
JOSÉ A. de FREITAS PACHECO ◽  
MANFRED DILLIG ◽  
HÉLIO T. COELHO

We discuss, in this work, new aspects related to the emission of gravitational waves by neutron stars, which undergo a phase transition, from nuclear to quark matter, in its inner core. Such a phase transition would liberate around 1052–53 erg of energy in the form of gravitational waves which, if detected, may shed some light in the structure of these compact objects and provide new insights on the equation of state of nuclear matter.


Author(s):  
CECILIA CHIRENTI ◽  
PATRICK R. SILVEIRA ◽  
ODYLIO D. AGUIAR

We study the non-radial oscillations of relativistic neutron stars, in particular the (fundamental) f-modes, which are believed to be the most relevant for the gravitational wave emission of perturbed isolated stars. The expected frequencies of the f-modes are compared to the sensitivity range of Mario Schenberg, the Brazilian gravitational wave spherical detector.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 365-366
Author(s):  
Liu Jinzhong ◽  
Zhang Yu

AbstractGravitational waves (GW) are a natural consequence of Einstein's theory of gravity (general relativity), and minute distortions of space-time. Gravitational Wave Astronomy is an emerging branch of observational astronomy which aims to use GWs to collect observational data about objects such as neutron stars and black holes, about events such as supernovae and about the early universe shortly after the big bang.This field will evolve to become an established component of 21st century multi-messenger astronomy, and will stand shoulder-to-shoulder with gamma-ray, x-ray, optical, infrared and radio astronomers in exploring the cosmos. In this paper, we state a recent theoretical study on GW sources, and present the results of our studies on the field using a binary population synthesis (BPS) approach, which was designed to investigate the formation of many interesting binary-related objects, including close double white dwarfs, AM CVn stars, ultra-compact X-ray binaries(UCXBs), double neutron stars, double stellar black holes. Here we report how BPS can be used to determine the GW radiation from double compact objects.


2017 ◽  
Vol 26 (01n02) ◽  
pp. 1740015 ◽  
Author(s):  
Chang-Hwan Lee

With H. A. Bethe, G. E. Brown worked on the merger rate of neutron star binaries for the gravitational wave detection. Their prediction has to be modified significantly due to the observations of [Formula: see text] neutron stars and the detection of gravitational waves. There still, however, remains a possibility that neutron star-low mass black hole binaries are significant sources of gravitational waves for the ground-based detectors. In this paper, I review the evolution of neutron star binaries with super-Eddington accretion and discuss the future prospect.


2021 ◽  
Vol 502 (4) ◽  
pp. 4680-4688
Author(s):  
Ankan Sur ◽  
Brynmor Haskell

ABSTRACT In this paper, we study the spin-evolution and gravitational-wave luminosity of a newly born millisecond magnetar, formed either after the collapse of a massive star or after the merger of two neutron stars. In both cases, we consider the effect of fallback accretion; and consider the evolution of the system due to the different torques acting on the star, namely the spin-up torque due to accretion and spin-down torques due to magnetic dipole radiation, neutrino emission, and gravitational-wave emission linked to the formation of a ‘mountain’ on the accretion poles. Initially, the spin period is mostly affected by the dipole radiation, but at later times, accretion spin the star up rapidly. We find that a magnetar formed after the collapse of a massive star can accrete up to 1 M⊙, and survive on the order of 50 s before collapsing to a black hole. The gravitational-wave strain, for an object located at 1 Mpc, is hc ∼ 10−23 at kHz frequencies, making this a potential target for next-generation ground-based detectors. A magnetar formed after a binary neutron star merger, on the other hand, accretes at the most 0.2 M⊙ and emits gravitational waves with a lower maximum strain of the order of hc ∼ 10−24, but also survives for much longer times, and may possibly be associated with the X-ray plateau observed in the light curve of a number of short gamma-ray burst.


Author(s):  
Yunus Emre Bahar ◽  
Manoneeta Chakraborty ◽  
Ersin Göğüş

Abstract We present the results of our extensive binary orbital motion corrected pulsation search for 13 low-mass X-ray binaries. These selected sources exhibit burst oscillations in X-rays with frequencies ranging from 45 to 1 122 Hz and have a binary orbital period varying from 2.1 to 18.9 h. We first determined episodes that contain weak pulsations around the burst oscillation frequency by searching all archival Rossi X-ray Timing Explorer data of these sources. Then, we applied Doppler corrections to these pulsation episodes to discard the smearing effect of the binary orbital motion and searched for recovered pulsations at the second stage. Here we report 75 pulsation episodes that contain weak but coherent pulsations around the burst oscillation frequency. Furthermore, we report eight new episodes that show relatively strong pulsations in the binary orbital motion corrected data.


2021 ◽  
Vol 922 (2) ◽  
pp. 174
Author(s):  
Kenny X. Van ◽  
Natalia Ivanova

Abstract We present a new method for constraining the mass transfer evolution of low-mass X-ray binaries (LMXBs)—a reverse population synthesis technique. This is done using the detailed 1D stellar evolution code MESA (Modules for Experiments in Stellar Astrophysics) to evolve a high-resolution grid of binary systems spanning a comprehensive range of initial donor masses and orbital periods. We use the recently developed convection and rotation-boosted (CARB) magnetic braking scheme. The CARB magnetic braking scheme is the only magnetic braking prescription capable of reproducing an entire sample of well-studied persistent LMXBs—those with mass ratios, periods, and mass transfer rates that have been observationally determined. Using the reverse population synthesis technique, where we follow any simulated system that successfully reproduces an observed LMXB backward, we have constrained possible progenitors for each observed well-studied persistent LMXB. We also determined that the minimum number of LMXB formations in the Milky Way is 1500 per Gyr if we exclude Cyg X-2. For Cyg X-2, the most likely formation rate is 9000 LMXB Gyr−1. The technique we describe can be applied to any observed LMXB with well-constrained mass ratio, period, and mass transfer rate. With the upcoming GAIA DR3 containing information on binary systems, this technique can be applied to the data release to search for progenitors of observed persistent LMXBs.


Sign in / Sign up

Export Citation Format

Share Document