scholarly journals Metallicity effect and planet mass function in pebble-based planet formation models

2018 ◽  
Vol 619 ◽  
pp. A174 ◽  
Author(s):  
N. Brügger ◽  
Y. Alibert ◽  
S. Ataiee ◽  
W. Benz

Context. One of the main scenarios of planet formation is the core accretion model where a massive core forms first and then accretes a gaseous envelope. This core forms by accreting solids, either planetesimals or pebbles. A key constraint in this model is that the accretion of gas must proceed before the dissipation of the gas disc. Classical planetesimal accretion scenarios predict that the time needed to form a giant planet’s core is much longer than the time needed to dissipate the disc. This difficulty led to the development of another accretion scenario, in which cores grow by accretion of pebbles, which are much smaller and thus more easily accreted, leading to more rapid formation. Aims. The aim of this paper is to compare our updated pebble-based planet formation model with observations, in particular the well-studied metallicity effect. Methods. We adopt the Bitsch et al. (2015a, A&A, 575, A28) disc model and the Bitsch et al. (2015b, A&A, 582, A112) pebble model and use a population synthesis approach to compare the formed planets with observations. Results. We find that keeping the same parameters as in Bitsch et al. (2015b, A&A, 582, A112) leads to no planet growth due to a computation mistake in the pebble flux (2018b). Indeed a large fraction of the heavy elements should be put into pebbles (Zpeb∕Ztot = 0.9) in order to form massive planets using this approach. The resulting mass functions show a huge amount of giants and a lack of Neptune-mass planets, which are abundant according to observations. To overcome this issue we include the computation of the internal structure for the planetary atmosphere in our model. This leads to the formation of Neptune-mass planets but no observable giants. Furthermore, reducing the opacity of the planetary envelope more closely matches observations. Conclusions. We conclude that modelling the internal structure for the planetary atmosphere is necessary to reproduce observations.

2010 ◽  
Vol 6 (S276) ◽  
pp. 171-180
Author(s):  
Gilles Chabrier ◽  
Jérémy Leconte ◽  
Isabelle Baraffe

AbstractIn this short review, we summarize our present understanding (and non-understanding) of exoplanet formation, structure and evolution, in the light of the most recent discoveries. Recent observations of transiting massive brown dwarfs seem to remarkably confirm the predicted theoretical mass-radius relationship in this domain. This mass-radius relationship provides, in some cases, a powerful diagnostic to distinguish planets from brown dwarfs of same mass, as for instance for Hat-P-20b. If confirmed, this latter observation shows that planet formation takes place up to at least 8 Jupiter masses. Conversely, observations of brown dwarfs down to a few Jupiter masses in young, low-extinction clusters strongly suggests an overlapping mass domain between (massive) planets and (low-mass) brown dwarfs, i.e. no mass edge between these two distinct (in terms of formation mechanism) populations. At last, the large fraction of heavy material inferred for many of the transiting planets confirms the core-accretion scenario as been the dominant one for planet formation.


2014 ◽  
Vol 14 (2) ◽  
pp. 201-232 ◽  
Author(s):  
C. Mordasini ◽  
P. Mollière ◽  
K.-M. Dittkrist ◽  
S. Jin ◽  
Y. Alibert

AbstractDespite the strong increase in observational data on extrasolar planets, the processes that led to the formation of these planets are still not well understood. However, thanks to the high number of extrasolar planets that have been discovered, it is now possible to look at the planets as a population that puts statistical constraints on theoretical formation models. A method that uses these constraints is planetary population synthesis where synthetic planetary populations are generated and compared to the actual population. The key element of the population synthesis method is a global model of planet formation and evolution. These models directly predict observable planetary properties based on properties of the natal protoplanetary disc, linking two important classes of astrophysical objects. To do so, global models build on the simplified results of many specialized models that address one specific physical mechanism. We thoroughly review the physics of the sub-models included in global formation models. The sub-models can be classified as models describing the protoplanetary disc (of gas and solids), those that describe one (proto)planet (its solid core, gaseous envelope and atmosphere), and finally those that describe the interactions (orbital migration and N-body interaction). We compare the approaches taken in different global models, discuss the links between specialized and global models, and identify physical processes that require improved descriptions in future work. We then shortly address important results of planetary population synthesis like the planetary mass function or the mass–radius relationship. With these statistical results, the global effects of physical mechanisms occurring during planet formation and evolution become apparent, and specialized models describing them can be put to the observational test. Owing to their nature as meta models, global models depend on the results of specialized models, and therefore on the development of the field of planet formation theory as a whole. Because there are important uncertainties in this theory, it is likely that the global models will in future undergo significant modifications. Despite these limitations, global models can already now yield many testable predictions. With future global models addressing the geophysical characteristics of the synthetic planets, it should eventually become possible to make predictions about the habitability of planets based on their formation and evolution.


2021 ◽  
Vol 645 ◽  
pp. A43
Author(s):  
O. Schib ◽  
C. Mordasini ◽  
N. Wenger ◽  
G.-D. Marleau ◽  
R. Helled

Context. The properties of protoplanetary discs determine the conditions for planet formation. In addition, planets can already form during the early stages of infall. Aims. We constrain physical quantities such as the mass, radius, lifetime, and gravitational stability of protoplanetary discs by studying their evolution from formation to dispersal. Methods. We perform a population synthesis of protoplanetary discs with a total of 50 000 simulations using a 1D vertically integrated viscous evolution code, studying a parameter space of final stellar mass from 0.05 to 5 M⊙. Each star-and-disc system is set up shortly after the formation of the protostar and fed by infalling material from the parent molecular cloud core. Initial conditions and infall locations are chosen based on the results from a radiation-hydrodynamic population synthesis of circumstellar discs. We also consider a different infall prescription based on a magnetohydrodynamic (MHD) collapse simulation in order to assess the influence of magnetic fields on disc formation. The duration of the infall phase is chosen to produce a stellar mass distribution in agreement with the observationally determined stellar initial mass function. Results. We find that protoplanetary discs are very massive early in their lives. When averaged over the entire stellar population, the discs have masses of ~0.3 and 0.1 M⊙ for systems based on hydrodynamic or MHD initial conditions, respectively. In systems characterised by a final stellar mass ~1 M⊙, we find disc masses of ~0.7 M⊙ for the “hydro” case and ~0.2 M⊙ for the “MHD” case at the end of the infall phase. Furthermore, the inferred total disc lifetimes are long, ≈5–7 Myr on average. This is despite our choice of a high value of 10−2 for the background viscosity α-parameter. In addition, we find that fragmentation is common in systems that are simulated using hydrodynamic cloud collapse, with more fragments of larger mass formed in more massive systems. In contrast, if disc formation is limited by magnetic fields, fragmentation may be suppressed entirely. Conclusions. Our work draws a picture quite different from the one often assumed in planet formation studies: protoplanetary discs are more massive and live longer. This means that more mass is available for planet formation. Additionally, when fragmentation occurs, it can affect the disc’s evolution by transporting large amounts of mass radially. We suggest that the early phases in the lives of protoplanetary discs should be included in studies of planet formation. Furthermore, the evolution of the central star, including its accretion history, should be taken into account when comparing theoretical predictions of disc lifetimes with observations.


2019 ◽  
Vol 488 (1) ◽  
pp. L12-L17 ◽  
Author(s):  
S Nayakshin ◽  
G Dipierro ◽  
J Szulágyi

ABSTRACT Due to recent high-resolution ALMA observations, there is an accumulating evidence for presence of giant planets with masses from ${\sim } 0.01 \, {\rm {M}}_{\rm {J}}$ to a few $\, {\rm {M}}_{\rm {J}}$ with separations up to 100 au in the annular structures observed in young protoplanetary discs. We point out that these observations set unique ‘live’ constraints on the process of gas accretion on to sub-Jovian planets that were not previously available. Accordingly, we use a population synthesis approach in a new way: we build time-resolved models and compare the properties of the synthetic planets with the ALMA data at the same age. Applying the widely used gas accretion formulae leads to a deficit of sub-Jovian planets and an overabundance of a few Jupiter mass planets compared to observations. We find that gas accretion rate on to planets needs to be suppressed by about an order of magnitude to match the observed planet mass function. This slower gas giant growth predicts that the planet mass should correlate positively with the age of the protoplanetary disc, albeit with a large scatter. This effect is not clearly present in the ALMA data but may be confirmed in the near future with more observations.


2012 ◽  
Vol 8 (S290) ◽  
pp. 259-260 ◽  
Author(s):  
Yan-Rong Li ◽  
Jian-Min Wang ◽  
Luis C. Ho

AbstractWe derive the mass function of supermassive black holes (SMBHs) over the redshift range 0 > z ≲ 2, using the latest deep luminosity and mass functions of field galaxies. Applying this mass function, combined with the bolometric luminosity function of active galactic nuclei (AGNs), into the the continuity equation of SMBH number density, we explicitly obtain the mass-dependent cosmological evolution of the radiative efficiency for accretion. We suggest that the accretion history of SMBHs and their spins evolve in two distinct regimes: an early phase of prolonged accretion, plausibly driven by major mergers, during which the black hole spins up, then switching to a period of random, episodic accretion, governed by minor mergers and internal secular processes, during which the hole spins down. The transition epoch depends on mass, mirroring other evidence for “cosmic downsizing” in the AGN population.


Author(s):  
I. Ferreras ◽  
C. Weidner ◽  
A. Vazdekis ◽  
F. La Barbera

The stellar initial mass function (IMF) is one of the fundamental pillars in studies of stellar populations. It is the mass distribution of stars at birth, and it is traditionally assumed to be universal, adopting generic functions constrained by resolved (i.e. nearby) stellar populations (e.g., Salpeter 1955; Kroupa 2001; Chabrier 2003). However, for the vast majority of cases, stars are not resolved in galaxies. Therefore, the interpretation of the photo-spectroscopic observables is complicated by the many degeneracies present between the properties of the unresolved stellar populations, including IMF, age distribution, and chemical composition. The overall good match of the photometric and spectroscopic observations of galaxies with population synthesis models, adopting standard IMF choices, made this issue a relatively unimportant one for a number of years. However, improved models and observations have opened the door to constraints on the IMF in unresolved stellar populations via gravity-sensitive spectral features. At present, there is significant evidence of a non-universal IMF in early-type galaxies (ETGs), with a trend towards a dwarf-enriched distribution in the most massive systems (see, e.g., van Dokkum & Conroy 2010; Ferreras et al. 2013; La Barbera et al. 2013). Dynamical and strong-lensing constraints of the stellar M/L in similar systems give similar results, with heavier M/L in the most massive ETGs (see, e.g., Cappellari et al. 2012; Posacki et al. 2015). Although the interpretation of the results is still open to discussion (e.g., Smith 2014; La Barbera 2015), one should consider the consequences of such a bottom-heavy IMF in massive galaxies.


2011 ◽  
Vol 7 (S281) ◽  
pp. 205-208
Author(s):  
Bo Wang ◽  
Zhanwen Han

AbstractEmploying Eggleton's stellar evolution code and assuming optically thick winds, we systematically studied the He star donor channel of Type Ia supernovae (SNe Ia), in which a carbon-oxygen white dwarf (WD) accretes material from a He main-sequence star or a He subgiant to increase its mass to the Chandrasekhar mass. We mapped out the initial parameters for producing SNe Ia in the orbital period–secondary mass plane for various WD masses from this channel. Based on a detailed binary population synthesis approach, we find that this channel can produce SNe Ia with short delay times (~100 Myr) implied by recent observations. We derived many properties of the surviving companions of this channel after SN explosion, which can be tested by future observations. We also find that the surviving companions from the SN explosion scenario have a high spatial velocity (>400 km/s), which could be an alternative origin for hypervelocity stars (HVSs), especially for HVSs such as US 708.


2018 ◽  
Vol 619 ◽  
pp. A165 ◽  
Author(s):  
A. J. Cridland

Here a physical model for terminating giant planet formation is outlined and compared to other methods of late-stage giant planet formation. As has been pointed out before, gas accreting into a gap and onto the planet will encounter the planetary dynamo-generated magnetic field. The planetary magnetic field produces an effective cross section through which gas is accreted. Gas outside this cross section is recycled into the protoplanetary disk, hence only a fraction of mass that is accreted into the gap remains bound to the planet. This cross section inversely scales with the planetary mass, which naturally leads to stalled planetary growth late in the formation process. We show that this method naturally leads to Jupiter-mass planets and does not invoke any artificial truncation of gas accretion, as has been done in some previous population synthesis models. The mass accretion rate depends on the radius of the growing planet after the gap has opened, and we show that so-called hot-start planets tend to become more massive than cold-start planets. When this result is combined with population synthesis models, it might show observable signatures of cold-start versus hot-start planets in the exoplanet population.


Sign in / Sign up

Export Citation Format

Share Document