scholarly journals Constraining stellar evolution theory with asteroseismology of gamma Doradus stars using deep learning. Stellar masses, ages, and core-boundary mixing

Author(s):  
J.S.G. Mombarg ◽  
T. Van Reeth ◽  
C. Aerts
1968 ◽  
Vol 34 ◽  
pp. 409-420
Author(s):  
Edwin E. Salpeter

Before discussing observational inputs and actual model calculations, I want to give a very elementary review of the relevant parts of stellar evolution theory. We shall only be dealing with stellar masses M below the Chandrasekhar limiting mass Mch(~1·2–1·45 M⊙, depending on chemical composition). The inequality M<Mch implies that relativistic effects are not of overriding importance and I will not mention them further (however, all quantitative model calculations which I will mention later include all the relativistic corrections to the equation of state, including radiation pressure which is also not very important). Let us try to estimate how the central temperature Tc and (total bolometric) luminosity L varies with central density ρc or radius R(ρc~MR−3) for a star of fixed mass.


2018 ◽  
Vol 620 ◽  
pp. A196 ◽  
Author(s):  
Leila M. Calcaferro ◽  
Alejandro H. Córsico ◽  
Leandro G. Althaus ◽  
Alejandra D. Romero ◽  
S. O. Kepler

Context. Some low-mass white-dwarf (WD) stars with H atmospheres currently being detected in our galaxy, show long-period g(gravity)-mode pulsations, and comprise the class of pulsating WDs called extremely low-mass variable (ELMV) stars. At present, it is generally believed that these stars have thick H envelopes. However, from stellar evolution considerations, the existence of low-mass WDs with thin H envelopes is also possible. Aims. We present a thorough asteroseismological analysis of ELMV stars on the basis of a complete set of fully evolutionary models that represents low-mass He-core WD stars harboring a range of H envelope thicknesses. Although there are currently nine ELMVs, here we only focus on those that exhibit more than three periods and whose periods do not show significant uncertainties. Methods. We considered g-mode adiabatic pulsation periods for low-mass He-core WD models with stellar masses in the range [0.1554–0.4352] M⊙, effective temperatures in the range [6000–10 000] K, and H envelope thicknesses in the interval −5.8 ≲ log(MH/M⋆)≲ −1.7. We explore the effects of employing different H-envelope thicknesses on the adiabatic pulsation properties of low-mass He-core WD models, and perform period-to-period fits to ELMV stars to search for a representative asteroseismological model. Results. We found that the mode-trapping effects of g modes depend sensitively on the value of MH, with the trapping cycle and trapping amplitude larger for thinner H envelopes. We also found that the asymptotic period spacing, ΔΠa, is longer for thinner H envelopes. Finally, we found asteroseismological models (when possible) for the stars under analysis, characterized by canonical (thick) and by thin H envelope. The effective temperature and stellar mass of these models are in agreement with the spectroscopic determinations. Conclusions. The fact that we have found asteroseismological solutions with H envelopes thinner than canonical gives a suggestion of the possible scenario of formation of these stars. Indeed, in the light of our results, some of these stars could have been formed by binary evolution through unstable mass loss.


Author(s):  
John J Eldridge

The study of the stars that explode as supernovae used to be a forensic study, working backwards from the remnants of the star. This changed in 1987 when the first progenitor star was identified in pre-explosion images. Currently, there are eight detected progenitors with another 21 non-detections, for which only a limit on the pre-explosion luminosity can be placed. This new avenue of supernova research has led to many interesting conclusions, most importantly that the progenitors of the most common supernovae, type IIP, are red supergiants, as theory has long predicted. However, no progenitors have been detected thus far for the hydrogen-free type Ib/c supernovae, which, given the expected progenitors, is an unlikely result. Also, observations have begun to show evidence that luminous blue variables, which are among the most massive stars, may directly explode as supernovae. These results contradict the current stellar evolution theory. This suggests that we may need to update our understanding.


2003 ◽  
Vol 409 (2) ◽  
pp. 611-618 ◽  
Author(s):  
E. Lastennet ◽  
J. Fernandes ◽  
D. Valls-Gabaud ◽  
E. Oblak

2020 ◽  
Vol 496 (1) ◽  
pp. 550-563
Author(s):  
Barış Hoyman ◽  
Sara Bulut ◽  
Orkun Özdarcan ◽  
Ömür Çakırlı

ABSTRACT Red giant stars are proving to be an exceptional source of information for testing models of stellar evolution, as photometric and spectroscopic analysis has opened up a window into their interiors, providing an exciting chance to develop highly constrained stellar models. In this study, we present a determination of precise fundamental physical parameters belonging to five detached, double-lined, eclipsing binary stars in the Large and Small Magellanic Clouds containing G- or early K-type giant stars with extended envelopes. We also derived the distances to the systems by using a temperature–colour relation and compared these distances with the measurements provided in the literature. The measured stellar masses are in the range 1.8–3.0 M⊙ and comparison with the PAdova and TRieste Stellar Evolution Code (PARSEC) isochrones gives ages between 0.4 and 1.1 Gyr. The derived uncertainties for individual masses and radii of components are better than 3 and 7 per cent, respectively, for these systems. Additionally, we performed atmospheric parameter determination and [M/H] analysis for each, where we disentangled the spectra.


2020 ◽  
Vol 493 (4) ◽  
pp. 4987-5004 ◽  
Author(s):  
George C Angelou ◽  
Earl P Bellinger ◽  
Saskia Hekker ◽  
Alexey Mints ◽  
Yvonne Elsworth ◽  
...  

ABSTRACT Convective boundary mixing (CBM) is ubiquitous in stellar evolution. It is a necessary ingredient in the models in order to match observational constraints from clusters, binaries, and single stars alike. We compute ‘effective overshoot’ measures that reflect the extent of mixing and which can differ significantly from the input overshoot values set in the stellar evolution codes. We use constraints from pressure modes to infer the CBM properties of Kepler and CoRoT main-sequence and subgiant oscillators, as well as in two radial velocity targets (Procyon A and α Cen A). Collectively, these targets allow us to identify how measurement precision, stellar spectral type, and overshoot implementation impact the asteroseismic solution. With these new measures, we find that the ‘effective overshoot’ for most stars is in line with physical expectations and calibrations from binaries and clusters. However, two F-stars in the CoRoT field (HD 49933 and HD 181906) still necessitate high overshoot in the models. Due to short mode lifetimes, mode identification can be difficult in these stars. We demonstrate that an incongruence between the radial and non-radial modes drives the asteroseismic solution to extreme structures with highly efficient CBM as an inevitable outcome. Understanding the cause of seemingly anomalous physics for such stars is vital for inferring accurate stellar parameters from TESS data with comparable timeseries length.


Sign in / Sign up

Export Citation Format

Share Document