scholarly journals Eclipsing binaries in the OGLE variable star catalogue: long-period evolved systems

2020 ◽  
Vol 496 (1) ◽  
pp. 550-563
Author(s):  
Barış Hoyman ◽  
Sara Bulut ◽  
Orkun Özdarcan ◽  
Ömür Çakırlı

ABSTRACT Red giant stars are proving to be an exceptional source of information for testing models of stellar evolution, as photometric and spectroscopic analysis has opened up a window into their interiors, providing an exciting chance to develop highly constrained stellar models. In this study, we present a determination of precise fundamental physical parameters belonging to five detached, double-lined, eclipsing binary stars in the Large and Small Magellanic Clouds containing G- or early K-type giant stars with extended envelopes. We also derived the distances to the systems by using a temperature–colour relation and compared these distances with the measurements provided in the literature. The measured stellar masses are in the range 1.8–3.0 M⊙ and comparison with the PAdova and TRieste Stellar Evolution Code (PARSEC) isochrones gives ages between 0.4 and 1.1 Gyr. The derived uncertainties for individual masses and radii of components are better than 3 and 7 per cent, respectively, for these systems. Additionally, we performed atmospheric parameter determination and [M/H] analysis for each, where we disentangled the spectra.

2017 ◽  
Vol 13 (S334) ◽  
pp. 325-326
Author(s):  
Nadège Lagarde ◽  
A. C. Robin ◽  
C. Reylé

AbstractThe cornerstone mission of the European Space Agency, Gaia, together with forthcoming complementary surveys (CoRoT, Kepler, K2, APOGEE and Gaia-ESO), will revolutionize our understanding of the formation and history of our Galaxy, providing accurate stellar masses, radii, ages, distances, as well as chemical properties for a very large sample of stars across different Galactic stellar populations. Using improved population synthesis approach and new stellar evolution models we attempt to evaluate the possibility to derive ages of clump stars from their chemical properties. A new version of the Besançon Galaxy models (BGM) is used in which new stellar evolutionary tracks are computed from the stellar evolution code STAREVOL. The effects of mixing on chemical composition of the stellar photosphere has a significant impact on the determined stellar age from the observed [C/N] ratio. We clearly show that transport processes occurring in red-giant stars should be taken into account in the determination of ages for future Galactic archaeology studies.


2020 ◽  
Vol 496 (3) ◽  
pp. 2605-2612
Author(s):  
Volkan Bakış ◽  
Zeki Eker ◽  
Oğuzhan Sarı ◽  
Gökhan Yücel ◽  
Eda Sonbaş

ABSTRACT Twin binaries were identified among the eclipsing binaries with δ > –30° listed in the All Sky Automated Survey (ASAS) catalogue. In addition to the known twin binaries in the literature, 68 new systems have been identified and photometric and spectroscopic observations were done. Colour, spectral type, temperature, ratio of radii and masses of the components have been derived and are presented. Including 12 twin binary systems that exist in both ASAS and the catalogue of absolute parameters of detached eclipsing binary stars, a total of 80 twin detached binary systems have been statistically studied. A comparison of the spectral type distribution of the twins with those of detached eclipsing binary stars in the ASAS database shows that the spectral type distribution of twins is similar to that of detached systems. This result has been interpreted as indicating that there is no special formation mechanism for twins compared to normal detached binaries. As a result of our case study for HD 154010, a twin binary, we present the precise physical parameters of the system.


2018 ◽  
Vol 616 ◽  
pp. A38 ◽  
Author(s):  
P. F. L. Maxted ◽  
R. J. Hutcheon

Context. The Kepler K2 mission now makes it possible to find and study a wider variety of eclipsing binary stars than has been possible to-date, particularly long-period systems with narrow eclipses. Aims. Our aim is to characterise eclipsing binary stars observed by the Kepler K2 mission with orbital periods longer than P ≈ 5.5 days. Methods. The ellc binary star model has been used to determine the geometry of eclipsing binary systems in Kepler K2 campaigns 1, 2 and 3. The nature of the stars in each binary is estimated by comparison to stellar evolution tracks in the effective temperature – mean stellar density plane. Results. 43 eclipsing binary systems have been identified and 40 of these are characterised in some detail. The majority of these systems are found to be late-type dwarf and sub-giant stars with masses in the range 0.6–1.4 solar masses. We identify two eclipsing binaries containing red giant stars, including one bright system with total eclipses that is ideal for detailed follow-up observations. The bright B3V-type star HD 142883 is found to be an eclipsing binary in a triple star system. We observe a series of frequencies at large multiples of the orbital frequency in BW Aqr that we tentatively identify as tidally induced pulsations in this well-studied eccentric binary system. We find that the faint eclipsing binary EPIC 201160323 shows rapid apsidal motion. Rotational modulation signals are observed in 13 eclipsing systems, the majority of which are found to rotate non-synchronously with their orbits. Conclusions. The K2 mission is a rich source of data that can be used to find long period eclipsing binary stars. These data combined with follow-up observations can be used to precisely measure the masses and radii of stars for which such fundamental data are currently lacking, e.g., sub-giant stars and slowly-rotating low-mass stars.


2019 ◽  
Vol 82 ◽  
pp. 119-125
Author(s):  
P.G. Beck ◽  
S. Mathis ◽  
T. Kallinger ◽  
R.A. García ◽  
M. Benbakoura

Binary stars are places of complex stellar interactions. While all binaries are in principle converging towards a state of circularization, many eccentric systems are found even in advanced stellar phases. In this work we discuss the sample of binaries with a red-giant component, discovered from observations of the NASA Kepler space mission. We first discuss which effects and features of tidal interactions are detectable in photometry, spectroscopy and the seismic analysis. In a second step, the sample of binary systems observed with Kepler, is compared to the well studied sample of Verbunt & Phinney (1995, hereafter VP95). We find that this study of circularization of systems hosting evolving red-giant stars with deep convective envelopes is also well applicable to the red-giant binaries in the sample of Kepler stars.


2020 ◽  
Vol 495 (1) ◽  
pp. 621-636 ◽  
Author(s):  
C Jiang ◽  
M Cunha ◽  
J Christensen-Dalsgaard ◽  
QS Zhang

ABSTRACT Because of the high-quality data of space missions, the detection of mixed modes has become possible in numerous stars. In this work, we investigate how the mixing character of dipolar mixed modes changes with stellar evolution, as well as with frequency within each stellar model. This is achieved by monitoring the variations in the coupling strength and the period spacing of dipolar mixed modes in red-giant models. These parameters are measured by fitting the asymptotic expansion of mixed modes to the model frequencies of a grid of red-giant models with masses between 1.0 and 2.0 M⊙ and three different chemical abundances. The coupling strength and the period spacing decrease with stellar evolution. We find that the slopes of their decreasing trends depend on the radial order of the pressure mode component. A non-negligible increase of the coupling strength with frequency by up to around 40 per cent is found in the observable frequency range for a set of red-giant models. On the contrary, no significant changes of the period spacing with frequency are found. The changes in the mixing character of the modes are in most cases affected by the model mass and metallicity. Buoyancy glitches also have an impact on the mixing character. Significant fluctuations in the estimated coupling strength and period spacing are found for models approaching the luminosity bump, if the glitch impact of the frequencies is not considered in the applied asymptotic expansion.


2009 ◽  
Vol 5 (S268) ◽  
pp. 301-309
Author(s):  
Verne V. Smith

AbstractConnections between observations of the lithium abundance in various types of red giants and stellar evolution are discussed here. The emphasis is on three main topics; 1) the depletion of Li as stars ascend the red giant branch for the first time, 2) the synthesis of 7Li in luminous and massive asymptotic giant branch stars via the mechanism of hot-bottom burning, and 3) the possible multiple sources of excess Li abundances found in a tiny fraction of various types of G and K giants.


2019 ◽  
Vol 630 ◽  
pp. A106 ◽  
Author(s):  
Patrick Gaulme ◽  
Joyce A. Guzik

Eclipsing binaries (EBs) are unique targets for measuring precise stellar properties and can be used to constrain stellar evolution models. In particular, it is possible to measure masses and radii of both components of a double-lined spectroscopic EB at the percent level. Since the advent of high-precision photometric space missions (MOST, CoRoT, Kepler, BRITE, TESS), the use of stellar pulsation properties to infer stellar interiors and dynamics constitutes a revolution for studies of low-mass stars. The Kepler mission has led to the discovery of thousands of classical pulsators such as δ Scuti and solar-like oscillators (main sequence and evolved), but also almost 3000 EBs with orbital periods shorter than 1100 days. We report the first systematic search for stellar pulsators in the entire Kepler EB catalog. The focus is mainly aimed at discovering δ Scuti, γ Doradus, red giant, and tidally excited pulsators. We developed a data inspection tool (DIT) that automatically produces a series of plots from the Kepler light curves that allows us to visually identify whether stellar oscillations are present in a given time series. We applied the DIT to the whole Kepler EB database and identified 303 systems whose light curves display oscillations, including 163 new discoveries. A total of 149 stars are flagged as δ Scuti (100 from this paper), 115 as γ Doradus (69 new), 85 as red giants (27 new), and 59 as tidally excited oscillators (29 new). There is some overlap among these groups, as some display several types of oscillations. Despite the likelihood that many of these systems are false positives, for example, when an EB light curve is blended with a pulsator, this catalog gathers a vast sample of systems that are valuable for a better understanding of stellar evolution.


2019 ◽  
Vol 630 ◽  
pp. A80 ◽  
Author(s):  
V. Schaffenroth ◽  
B. N. Barlow ◽  
S. Geier ◽  
M. Vučković ◽  
D. Kilkenny ◽  
...  

Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations – reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to strip off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution.


2019 ◽  
Vol 15 (S357) ◽  
pp. 184-187
Author(s):  
Nadège Lagarde ◽  
Céline Reylé

AbstractThe cornerstone mission of the European Space Agency, Gaia, has revealed properties of 260 000 white dwarfs in the Galaxy, allowing us for the first time to constrain the evolution of white dwarfs with a large sample. Complementary surveys (CoRoT, Kepler, K2, APOGEE and Gaia-ESO), will revolutionize our understanding of the formation and history of our Galaxy, providing accurate stellar masses, radii, ages, distances, and chemical properties for very large samples of stars across different Galactic stellar populations. To exploit the potential of the combination of spectroscopic, seismic and astrometric observations, the population synthesis approach is a very crucial and efficient tool. We develop the Besançon Galaxy model (BGM, Lagarde et al.2017) for which stellar evolution predictions are included, providing the global asteroseismic properties and the surface chemical abundances along the evolution of low- and intermediate-mass stars. For the first time, the BGM can explore the effects of an extra-mixing occurring in red-giant stars Lagarde et al.2019, changing their stellar properties. The next step is to model a consistent treatment of giant stars and their remnants (e.g., white dwarfs). This kind of improvement would help us to constrain stellar and Galactic evolutions.


1997 ◽  
Vol 189 ◽  
pp. 109-114
Author(s):  
H.A. McAlister

This paper is a brief overview of the past performance and future promise of interferometry as applied to the study of binary stars. For the sake of brevity, the important results from infrared techniques in recent years are regretfully omitted here. It is probably unnecessary to remind the reader that the analysis of binary star orbital motions is the only direct means for the determination of stellar masses. Historically, stellar masses have resulted primarily from orbits that are sufficiently wide in angular separation to permit the astrometric determination of the motions of the individual components about the center of mass as well as the parallax of the system or from short-period spectroscopic/eclipsing binaries. The advent of long baseline optical interferometers holds the promise of a wealth of new stellar mass data through the direct resolution of spectroscopic binaries.


Sign in / Sign up

Export Citation Format

Share Document