scholarly journals Filament coalescence and hub structure in MonR2. Implications for massive star and cluster formation

Author(s):  
M.S.N. Kumar ◽  
D. Arzoumanian ◽  
A. Men'shchikov ◽  
P. Palmeirim ◽  
M. Matsumura ◽  
...  
2006 ◽  
Vol 2 (S237) ◽  
pp. 408-408
Author(s):  
Richard de Grijs

Young, massive star clusters (YMCs) are the most notable and significant end products of violent star-forming episodes triggered by galaxy collisions and close encounters. The question remains, however, whether or not at least a fraction of the compact YMCs seen in abundance in extragalactic starbursts, are potentially the progenitors of (≳10 Gyr) old globular cluster (GC)-type objects. If we could settle this issue convincingly, one way or the other, the implications of such a result would have far-reaching implications for a wide range of astrophysical questions, including our understanding of the process of galaxy formation and assembly, and the process and conditions required for star (cluster) formation. Because of the lack of a statistically significant sample of YMCs in the Local Group, however, we need to resort to either statistical arguments or to the painstaking approach of case-by-case studies of individual objects in more distant galaxies.


2010 ◽  
Vol 6 (S270) ◽  
pp. 57-64
Author(s):  
Ian A. Bonnell ◽  
Rowan J Smith

AbstractThere has been considerable progress in our understanding of how massive stars form but still much confusion as to why they form. Recent work from several sources has shown that the formation of massive stars through disc accretion, possibly aided by gravitational and Rayleigh-Taylor instabilities is a viable mechanism. Stellar mergers, on the other hand, are unlikely to occur in any but the most massive clusters and hence should not be a primary avenue for massive star formation. In contrast to this success, we are still uncertain as to how the mass that forms a massive star is accumulated. there are two possible mechanisms including the collapse of massive prestellar cores and competitive accretion in clusters. At present, there are theoretical and observational question marks as to the existence of high-mass prestellar cores. theoretically, such objects should fragment before they can attain a relaxed, centrally condensed and high-mass state necessary to form massive stars. Numerical simulations including cluster formation, feedback and magnetic fields have not found such objects but instead point to the continued accretion in a cluster potential as the primary mechanism to form high-mass stars. Feedback and magnetic fields act to slow the star formation process and will reduce the efficiencies from a purely dynamical collapse but otherwise appear to not significantly alter the process.


2018 ◽  
Vol 483 (3) ◽  
pp. 3618-3635 ◽  
Author(s):  
E Vanzella ◽  
F Calura ◽  
M Meneghetti ◽  
M Castellano ◽  
G B Caminha ◽  
...  

2008 ◽  
Vol 4 (S255) ◽  
pp. 366-369
Author(s):  
Kelsey E. Johnson ◽  
Leslie K. Hunt ◽  
Amy E. Reines

AbstractThe ubiquitous presence of globular clusters around massive galaxies today suggests that these extreme star clusters must have been formed prolifically in the earlier universe in low-metallicity galaxies. Numerous adolescent and massive star clusters are already known to be present in a variety of galaxies in the local universe; however most of these systems have metallicities of 12 + log(O/H) > 8, and are thus not representative of the galaxies in which today's ancient globular clusters were formed. In order to better understand the formation and evolution of these massive clusters in environments with few heavy elements, we have targeted several low-metallicity dwarf galaxies with radio observations, searching for newly-formed massive star clusters still embedded in their birth material. The galaxies in this initial study are HS 0822+3542, UGC 4483, Pox 186, and SBS 0335-052, all of which have metallicities of 12 + log(O/H) < 7.75. While no thermal radio sources, indicative of natal massive star clusters, are found in three of the four galaxies, SBS 0335-052 hosts two such objects, which are incredibly luminous. The radio spectral energy distributions of these intense star-forming regions in SBS 0335-052 suggest the presence of ~12,000 equivalent O-type stars, and the implied star formation rate is nearing the maximum starburst intensity limit.


2019 ◽  
Vol 628 ◽  
pp. A60 ◽  
Author(s):  
Jérémy Fensch ◽  
Pierre-Alain Duc ◽  
Médéric Boquien ◽  
Debra M. Elmegreen ◽  
Bruce G. Elmegreen ◽  
...  

Context. The formation of globular clusters remains an open debate. Dwarf starburst galaxies are efficient at forming young massive clusters with similar masses as globular clusters and may hold the key to understanding their formation. Aims. We study star cluster formation in a tidal debris, including the vicinity of three tidal dwarf galaxies, in a massive gas-dominated collisional ring around NGC 5291. These dwarfs have physical parameters that differ significantly from local starbursting dwarfs. They are gas rich, highly turbulent, their gas metallicity is already enriched up to half solar values, and they are expected to be free of dark matter. The aim is to study massive star cluster formation in this as yet unexplored type of environment. Methods. We used imaging from the Hubble Space Telescope using broadband filters that cover the wavelength range from the near-ultraviolet to the near-infrared. We determined the masses and ages of the cluster candidates by using the spectral energy distribution-fitting code CIGALE. We considered age-extinction degeneracy effects on the estimation of the physical parameters. Results. We find that the tidal dwarf galaxies in the ring of NGC 5291 are forming star clusters with an average efficiency of ∼40%, which is similar to blue compact dwarf galaxies. We also find massive star clusters for which the photometry suggests that they were formed at the very birth of the tidal dwarf galaxies. These clusters have survived for several hundred million years. Therefore our study shows that extended tidal dwarf galaxies and compact clusters may be formed simultaneously. In the specific case observed here, the young star clusters are not massive enough to survive for a Hubble time. However, it may be speculated that similar objects at higher redshift, with a higher star formation rate, might form some of the long-lived globular clusters.


2006 ◽  
Vol 2 (S237) ◽  
pp. 222-229 ◽  
Author(s):  
B. C. Whitmore

AbstractIt is generally believed that most stars are born in groups and clusters, rather than in the field. It has also been demonstrated that merging galaxies produce large numbers of young massive star clusters, sometimes called super star clusters. Hence, understanding what triggers the formation of these young massive clusters may provide important information about what triggers the formation of stars in general. In recent years it has become apparent that most clusters do not survive more than ≈10 Myr (i.e., “infant mortality”). Hence, it is just as important to understand the disruption of star clusters as it is to understand their formation if we want to understand the demographics of both star clusters and field stars. This talk will first discuss what triggers star cluster formation in merging galaxies (primarily in the Antennae galaxies), will then demonstrate that most of the faint objects detected in the Antennae are clusters rather than individual stars (which shows that the initial mass function was a power law rather than a Gaussian), and will then outline a general framework designed to empirically fit observations of both star clusters and field stars in a wide variety of galaxies from mergers to quiescent spirals.


2019 ◽  
Vol 14 (S351) ◽  
pp. 3-12
Author(s):  
William E. Harris

AbstractOn observational grounds we now know a huge amount about the characteristics of massive star clusters in galaxies of all types, from the smallest dwarfs to the most massive giants and even into the Intracluster Medium. The old globular clusters (GCs) in particular exhibit a high degree of uniformity across all these environments in their physical properties including scale size, luminosity distribution, metallicity distribution, and age. As survivors of a long period of dynamical evolution, they are “unusual, but not special” among star clusters.The past few years have seen major advances in theoretical modelling that are starting to reveal how these massive star clusters formed in the early stages of galaxy evolution. Several suites of models point to their emergence in GMCs (Giant Molecular Clouds), which provide the turbulent big reservoirs of gas within which star clusters can be built. At cluster masses ∼105M⊙ and above, clusters form hierarchically through a nearly equal combination of direct gas accretion, and mergers with smaller clusters scattered throughout the GMC. GCs and YMCs (young massive clusters) in this high mass range should therefore be composite systems right from birth. To make such high-mass clusters, host GMCs of ∼107M⊙ are needed, and these are most commonly found in galaxies at redshifts z ≳ 2.


Sign in / Sign up

Export Citation Format

Share Document