scholarly journals Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars

2003 ◽  
Vol 410 (2) ◽  
pp. 527-551 ◽  
Author(s):  
T. Bensby ◽  
S. Feltzing ◽  
I. Lundström
2008 ◽  
Vol 4 (S254) ◽  
pp. 197-202
Author(s):  
Sofia Feltzing ◽  
Sally Oey ◽  
Thomas Bensby

AbstractThe past history and origin of the different Galactic stellar populations are manifested in their different chemical abundance patterns. We obtained new elemental abundances for 553 F and G dwarf stars, to more accurately quantify these patterns for the thin and thick disks. However, the exact definition of disk membership is not straightforward. Stars that have a high likelihood of belonging to the thin disk show different abundance patterns from those for the thick disk. In contrast, we show that stars for the Hercules Stream do not show unique abundance patterns, but rather follow those of the thin and thick disks. This strongly suggests that the Hercules Stream is a feature induced by internal dynamics within the Galaxy rather than the remnant of an accreted satellite.


2009 ◽  
Vol 5 (S265) ◽  
pp. 300-303 ◽  
Author(s):  
Thomas Bensby ◽  
Sofia Feltzing

AbstractWe have obtained high-resolution spectra and carried out a detailed elemental abundance analysis for a new sample of 899 F and G dwarf stars in the Solar neighbourhood. The results allow us to, in a multi-dimensional space consisting of stellar ages, detailed elemental abundances, and full kinematic information for the stars, study and trace their respective origins. Here we briefly address selection criteria and discuss how to define a thick disc star. The results are discussed in the context of galaxy formation.


2008 ◽  
Vol 4 (S254) ◽  
pp. 179-190 ◽  
Author(s):  
Rosemary F. G. Wyse

AbstractI discuss how the chemical abundance distributions, kinematics and age distributions of stars in the thin and thick disks of the Galaxy can be used to decipher the merger history of the Milky Way, a typical large galaxy. The observational evidence points to a rather quiescent past merging history, unusual in the context of the ‘consensus’ cold-dark-matter cosmology favoured from observations of structure on scales larger than individual galaxies.


2009 ◽  
Vol 5 (S265) ◽  
pp. 346-347
Author(s):  
T. Bensby ◽  
S. Feltzing ◽  
J. A. Johnson ◽  
A. Gould ◽  
H. Sana ◽  
...  

AbstractWe present elemental abundances of 13 microlensed dwarf and subgiant stars in the Galactic bulge, which constitute the largest sample to date. We show that these stars span the full range of metallicity from Fe/H= −0.8 to +0.4, and that they follow well-defined abundance trends, coincident with those of the Galactic thick disc.


1991 ◽  
Vol 145 ◽  
pp. 13-19
Author(s):  
James W. Truran

Recent spectroscopic studies of the elemental abundance patterns associated with extremely metal deficient field halo stars and globular cluster stars are briefly reviewed. These metal deficient stellar populations have been found to be characterized by abundance patterns which differ quite distinctly from those of solar system abundances, but are consistent with the view that they reflect primarily the nucleosynthesis products of the evolution of massive stars and associated Type II supernovae. Guided by our current knowledge of nucleosynthesis as a function of stellar mass occurring in stars and supernovae, we identify some interesting constraints upon theories of the formation and early history of our Galaxy.


2016 ◽  
Vol 11 (S321) ◽  
pp. 3-5
Author(s):  
Thomas Bensby

AbstractBased on observational data from the fourth internal data release of the Gaia-ESO Survey we probe the abundance structure in the Milky Way stellar disk as a function of galactocentric radius and height above the plane. We find that the inner and outer Galactic disks have different chemical signatures. The stars in the inner Galactic disk show abundance signatures of both the thin and thick disks, while the stars in the outer Galactic disk resemble in majority the abundances seen in the thin disk. Assuming that the Galactic thick disk can be associated with the α-enriched population, this can be interpreted as that the thick disk density drops drastically beyond a galactocentric radius of about 10 kpc. This is in agreement with recent findings that the thick disk has a short scale-length, shorter than that of the the thin disk.


Sign in / Sign up

Export Citation Format

Share Document