scholarly journals The radial extent of the Galactic thick disk

2016 ◽  
Vol 11 (S321) ◽  
pp. 3-5
Author(s):  
Thomas Bensby

AbstractBased on observational data from the fourth internal data release of the Gaia-ESO Survey we probe the abundance structure in the Milky Way stellar disk as a function of galactocentric radius and height above the plane. We find that the inner and outer Galactic disks have different chemical signatures. The stars in the inner Galactic disk show abundance signatures of both the thin and thick disks, while the stars in the outer Galactic disk resemble in majority the abundances seen in the thin disk. Assuming that the Galactic thick disk can be associated with the α-enriched population, this can be interpreted as that the thick disk density drops drastically beyond a galactocentric radius of about 10 kpc. This is in agreement with recent findings that the thick disk has a short scale-length, shorter than that of the the thin disk.

2008 ◽  
Vol 4 (S254) ◽  
pp. 103-108 ◽  
Author(s):  
Poul Erik Nissen ◽  
William J. Schuster

AbstractNew information on the relations between the Galactic disks, the halo, and satellite galaxies is being obtained from elemental abundances of stars having metallicities in the range −1.5 < [Fe/H] < −0.5. The first results for a sample of 26 halo stars and 13 thick-disk stars observed with the ESO VLT/UVES spectrograph are presented. The halo stars fall in two distinct groups: one group (9 stars) has [α/Fe] = 0.30 ± 0.03 like the thick-disk stars. The other group (17 stars) shows a clearly deviating trend ranging from [α/Fe] = 0.20 at [Fe/H] = −1.3 to [α/Fe] = 0.08 at [Fe/H] = −0.8. The kinematics of the stars are discussed and the abundance ratios Na/Fe, Ni/Fe, Cu/Fe and Ba/Y are applied to see if the “low-alpha” stars are connected to the thin disk or to Milky Way satellite galaxies. Furthermore, we compare our data with simulations of chemical abundance distributions in hierarchically formed stellar halos in a ΛCDM Universe.


Author(s):  
K. Vieira ◽  
V. Korchagin ◽  
A. Lutsenko

Using GAIA EDR3 catalog, we present the detailed analysis of the two-component Milky Way stellar disk in the solar neighborhood. To determine the kinematical properties of the thin and of the Thick disks, we select the complete sample of about 278,000 evolved red giant branch (RGB) stars distributed in the cylinder of 1 kpc radius and 0.5 kpc height centered at the Sun. We measured the following mean velocities and dispersions for the thin and the Thick disks, respectively: [Formula: see text][Formula: see text]km s[Formula: see text] with [Formula: see text][Formula: see text]km s[Formula: see text], and [Formula: see text][Formula: see text]km s[Formula: see text] with [Formula: see text][Formula: see text]km s[Formula: see text]. Errors in mean velocities and dispersions are all less than 1[Formula: see text]km s[Formula: see text]. Same values were computed on much smaller subsamples of our Gaia data with RAVE DR5 [Fe/H] values, from which a metallicity selection was added. Results are basically the same. We find that up to 500 pc height above/below the galactic plane, Thick disk stars comprise about half the stars of the disk. We also find evidence of a substructure in [Formula: see text] versus [Formula: see text] in the thick disk population mostly that would give support to the accretion scenario for the formation of the thick disk.


2017 ◽  
Vol 13 (S334) ◽  
pp. 306-307
Author(s):  
Doori Han ◽  
Young Sun Lee ◽  
Young Kwang Kim ◽  
Timothy C. Beers

AbstractWe present the derived kinematic characteristics of low-α thin-disk and high-α thick-disk stars in the Milky Way, investigated with a sample of about 32,000 G- and K-type dwarfs from the Sloan Extension for Galactic Understanding and Exploration (SEGUE). Based on the level of α-element enhancement as a function of [Fe/H], we separate our sample into thin- and thick-disk stars and then derive mean velocities, velocity dispersions, and velocity gradients for the U, V, and W velocity components, respectively, as well as the orbital eccentricity distribution. There are notable gradients in the V velocity over [Fe/H] in both populations: −23 km s−1 dex−1 for the thin disk and +44 km s−1 dex−1 for the thick disk. The velocity dispersion of the thick disk decreases with increasing [Fe/H], while the velocity dispersion gradient over [Fe/H] for the thin disk is almost flat for all velocity components, except for the W velocity dispersion of the metal-poor thin-disk stars. The eccentricity distribution exhibits a peak at a higher value, and is more symmetric as [α/Fe] increases, implying that complex formation mechanisms may be involved. Our results can be used to constrain several proposed disk-formation scenarios of the Milky Way and other large spirals.


2018 ◽  
Vol 615 ◽  
pp. A151 ◽  
Author(s):  
Thomas Bensby ◽  
Karin Lind

Despite the recent availability of large samples of stars with high-precision Li abundances, there are many unanswered questions about the evolution of this unique element in the Galaxy and in the stars themselves. It is unclear which parameters and physical mechanisms govern Li depletion in late-type stars and if Galactic enrichment has proceeded differently in different stellar populations. With this study we aim to explore these questions further by mapping the evolution of Li with stellar mass, age, and effective temperature for Milky Way disk stars, linking the metal-poor and metal-rich regimes, and how Li differs in the thin and thick disks. We determine Li abundances for a well-studied sample of 714 F and G dwarf, turn-off, and subgiant stars in the solar neighbourhood. The analysis is based on line synthesis of the 7Li line at 6707 Å in high-resolution and high-signal-to-noise ratio echelle spectra, obtained with the MIKE, FEROS, SOFIN, UVES, and FIES spectrographs. The presented Li abundances are corrected for non-LTE effects. Out of the sample of 714 stars, we are able to determine Li abundances for 394 stars and upper limits on the Li abundance for another 121 stars. Out of 36 stars that are listed as exoplanet host stars, 18 have well-determined Li abundances and 6 have Li upper limits. Our main finding is that there are no signatures of Li production in stars associated with the thick disk. Instead the Li abundance trend is decreasing with metallicity for these thick disk stars. Significant Li production is however seen in the thin disk, with a steady increase towards super-solar metallicities. At the highest metallicities, however, around [Fe/H] ≈ +0.3, we tentatively confirm the recent discovery that the Li abundances level out. Our finding contradicts the other recent studies that found that Li is also produced in the thick disk. We find that this is likely due to the α-enhancement criteria which those studies used to define their thick disk samples. By using the more robust age criteria, we are able to define a thick disk stellar sample that is much less contaminated by thin disk stars. Furthermore, we also tentatively confirm the age-Li correlation for solar twin stars, and we find that there is no correlation between Li abundance and whether the stars have detected exoplanets or not. The major conclusion that can be drawn from this study is that no significant Li production relative to the primordial abundance took place during the first few billion years of the Milky Way, an era coinciding with the formation and evolution of the thick disk. Significant Li enrichment then took place once long-lived low-mass stars (acting on a timescale longer than SNIa) had had time to contribute to the chemical enrichment of the interstellar medium.


2001 ◽  
Vol 204 ◽  
pp. 213-213
Author(s):  
D. K. Ojha

This paper presents a global analysis of the first 2MASS (Two Micron All Sky Survey) data as observed in seven fields at different Galactic latitudes. These new data lead to strong constraints on the radial structure of the Galactic thin and thick disks. The interpretation of star counts and color distributions of stars in the near-infrared with a synthetic stellar population model provides strong evidence that the Galactic thin disk density scale length, hR, is rather short (2.8±0.3 kpc). The Galactic thick disk population is revisited in the light of new data. We find the thick disk to have a local density of 3.5 ± 2.0% of the thin disk, exponential scale height, hz, of 860±200 pc and exponential scale length, hR, of


2018 ◽  
Vol 617 ◽  
pp. A142 ◽  
Author(s):  
S. Sarkar ◽  
C. J. Jog

We study the vertical stellar distribution of the Milky Way thin disk in detail with particular focus on the outer disk. We treat the galactic disk as a gravitationally coupled, three-component system consisting of stars, atomic hydrogen gas, and molecular hydrogen gas in the gravitational field of the dark matter halo. The self-consistent vertical distribution for stars and gas in such a realistic system is obtained for radii between 4–22 kpc. The inclusion of an additional gravitating component constrains the vertical stellar distribution toward the mid-plane, so that the mid-plane density is higher, the disk thickness is reduced, and the vertical density profile is steeper than in the one-component, isothermal, stars-alone case. We show that the stellar distribution is constrained mainly by the gravitational field of gas and dark matter halo in the inner and the outer Galaxy, respectively. We find that the thickness of the stellar disk (measured as the half-width at half-maximum of the vertical density distribution) increases with radius, flaring steeply beyond R = 17 kpc. The disk thickness is reduced by a factor of 3–4 in the outer Galaxy as a result of the gravitational field of the halo, which may help the disk resist distortion at large radii. The disk would flare even more if the effect of dark matter halo were not taken into account. Thus it is crucially important to include the effect of the dark matter halo when determining the vertical structure and dynamics of a galactic disk in the outer region.


2008 ◽  
Vol 4 (S254) ◽  
pp. 179-190 ◽  
Author(s):  
Rosemary F. G. Wyse

AbstractI discuss how the chemical abundance distributions, kinematics and age distributions of stars in the thin and thick disks of the Galaxy can be used to decipher the merger history of the Milky Way, a typical large galaxy. The observational evidence points to a rather quiescent past merging history, unusual in the context of the ‘consensus’ cold-dark-matter cosmology favoured from observations of structure on scales larger than individual galaxies.


2008 ◽  
Vol 4 (S254) ◽  
pp. 197-202
Author(s):  
Sofia Feltzing ◽  
Sally Oey ◽  
Thomas Bensby

AbstractThe past history and origin of the different Galactic stellar populations are manifested in their different chemical abundance patterns. We obtained new elemental abundances for 553 F and G dwarf stars, to more accurately quantify these patterns for the thin and thick disks. However, the exact definition of disk membership is not straightforward. Stars that have a high likelihood of belonging to the thin disk show different abundance patterns from those for the thick disk. In contrast, we show that stars for the Hercules Stream do not show unique abundance patterns, but rather follow those of the thin and thick disks. This strongly suggests that the Hercules Stream is a feature induced by internal dynamics within the Galaxy rather than the remnant of an accreted satellite.


1996 ◽  
Vol 169 ◽  
pp. 427-428
Author(s):  
Roland Buser ◽  
Jianxiang Rong

The metallicity-sensitive (U – G) colors from the new homogeneous catalog of photographic RGU data in seven high-latitude fields have been used to determine the larger-scale metallicity distributions of the Galactic population components. For the thick disk, preliminary analysis based on our best structural models provides a mean metallicity 〈[M/H]〉 = −0.6 ± 0.3dex and a marginal vertical metallicity gradient ≈ −0.1dex/kpc. The observed color distributions are further consistent with the (old) thin disk having mean abundance 〈[M/H]〉 = −0.3 ± 0.2dex and abundance gradient ∂[M/H]/∂z = −0.6dex/kpc.


Author(s):  
Francesca Matteucci

AbstractIn this review, I will discuss the comparison between model results and observational data for the Milky Way, the predictive power of such models as well as their limits. Such a comparison, known as Galactic archaeology, allows us to impose constraints on stellar nucleosynthesis and timescales of formation of the various Galactic components (halo, bulge, thick disk and thin disk).


Sign in / Sign up

Export Citation Format

Share Document