scholarly journals Rockburst of parameters causing mining disasters in Mines of Upper Silesian Coal Basin

2018 ◽  
Vol 36 ◽  
pp. 03005 ◽  
Author(s):  
Renata Patyńska ◽  
Adam Mirek ◽  
Zbigniew Burtan ◽  
Elżbieta Pilecka

In the years 2001-2015, 42 rockbursts were recorded in Polish coal mines. For the past 15 years the scale of the phenomena has been similar and ranges from 1 to 5 rockbursts per year. However, the number of recorded high energy seismic tremors of 108 and 109J (E) energy that has occurred in recent years, 2 to 5, is alarming. According to the data, 27 of tremors of E > 108 J energy that occurred between 2001 and 2015 caused 3 rockbursts. Confronting these data with seismic activity from 1989-2000, it should be noted that only 2 events out of 99 rockbursts caused tremors with energies of E>108 J. Against the background of the scale of seismic and rockburst hazards, the geological and mining conditions of the Upper Silesian Coal Basin (USCB) have been analysed, detailing the structural units in which the rockbursts occurred. On this basis, the author characterised factors that impacts on the mining excavations resulting in rockbursts that caused damage on a larger scale. These rockbursts had the characteristics of mining catastrophes and weak earthquakes not recorded in mining statistics of natural hazards of USCB so far.

2019 ◽  
Vol 2 (1) ◽  
pp. 91-100
Author(s):  
Magdalena Tutak

Abstract Hard coal mines and mining enterprises involved in hard coal exploitation in the area of the Upper Silesian Coal Basin (Górnośląskie Zagłębie Węglowe) are characterised by the presence of natural hazards typical of this type of exploitation. These hazards include the risks related to methane, coal dust explosion, endogenous fires, as well as rock burst and caving of roof rocks. The article presents the results of a taxonomic analysis aimed at determining the similarity of hard coal mines and mining enterprises in Poland in terms of the dangerous incidents caused by the risks related to methane, coal dust explosion, endogenous fires, as well as rock burst and caving of roof rocks. The analysis was carried out for the 2008-2018 data and encompassed a total of 26 hard coal mines and mining enterprises located in the Upper Silesian Coal Basin. The analysis was performed using the k-means method of non-hierarchical clustering. The main objective of the article was to determine homogenous groups (clusters) of mines exhibiting the greatest similarity in terms of dangerous incidents caused by the activation of natural hazards in the years 2008-2018. These data can be successfully used for the development of preventive measures and risk analyses for these enterprises.


2017 ◽  
Vol 39 (3) ◽  
pp. 27-37 ◽  
Author(s):  
Renata Patyńska ◽  
Krystyna Stec

Abstract The paper presents the characteristics of seismic tremors and rockbursts that occurred between 2001 and 2015. The characteristics are based on a general description of the geological structure of the Upper Silesian Coal Basin (USCB). The level of seismic activity in the analysed period changed a number of times and depended on the intensity of mining works and diverse mining and geological conditions in each of the five regions where tremors occurred (Bytom Trough, Main Saddle, Main Trough, Kazimierz Trough, and Jejkowice and Chwałowice Troughs) and which belong to various structural units of the Upper Silesia. It was found out that in the case of rockbursts the phenomena were recorded in three regions. These are: Main Saddle, Bytom Trough, and Jejkowice and Chwałowice Troughs. The so called Regional Rockburst Indicator (RWT) was estimated for each of the regions where the rockbursts had been recorded. The obtained values of RWT are presented against the Probability of RockBurst (PT) in a given area.


2019 ◽  
Vol 106 ◽  
pp. 01020
Author(s):  
Renata Patyńska ◽  
Elżbieta Pilecka ◽  
Adam Mirek

The article presents seismological analysis in the mines of Polska Grupa Górnicza S.A. (PGG S.A.) in relation with the geological and tectonic structure of the exploited rock mass. There are grounds for seismic activity, to be associated with the structural features of the rock mass in which underground exploitation is carried out. The analysis included high-energy tremors (with energy E > 105 J), which occurred in 2018. High energy tremors can cause mining damage on the surface. In 2018, three structural units out of five covering the Upper Silesian Coal Basin formed a rock formation coal mine of PGG S.A. The parameter analyzed was unit energy expenditure (JWE). It reflects the participation of two important pieces of information: total energy of tremors and mining of coal in a given period. The analysis shows that in 2018 JWE fell in total at PGG. However, it grew in the main trough, which translates into an increase in the risk of induced seismicity. Due to geological features, the area of exploitation covering the main trough, induces high-energy tremors that can cause effects on the surface. In other structural units, in 2018, JWE drops.


2021 ◽  
Vol 80 (22) ◽  
Author(s):  
Marcin Dreger ◽  
Sławomir Kędzior

AbstractThe paper presents the variability of hard coal output, methane content and methane emissions into coal workings and into the atmosphere from the two most methane-gassy coal mines in Poland. The Budryk mine is one of the youngest mines in Poland, but it is the most methane-gassy as well. In 2016, the total CH4 emissions exceed 140 million of m3. This large increase in methane emissions to mine workings is primarily related to the increase in the depth of coal extraction (up to 1290 m) and, consequently, the rapid increase in the methane content in coal seams (up to 10–12 m3/Mg coaldaf). On the other hand, in the Pniówek mine, methane emission was the highest at the beginning of the study period (1986–1991). During the following years, emission decreased to the values of less than 140 million of m3, which were still one of the largest amounts of emitted methane in the entire Upper Silesian Coal Basin. The coexistence of natural factors, such as the geological structure and gas distribution, as well as mining-related factors, i.e. the depth of mining, the intensity of coal extraction determines the temporal variability of methane emissions in the studied mines.


Sign in / Sign up

Export Citation Format

Share Document