The probability of rockburst occurrence in the Upper Silesian Coal Basin area dependent on natural mining conditions

2006 ◽  
Vol 42 (6) ◽  
pp. 570-577 ◽  
Author(s):  
M. Bukowska
2021 ◽  
Vol 80 (22) ◽  
Author(s):  
Marcin Dreger ◽  
Sławomir Kędzior

AbstractThe paper presents the variability of hard coal output, methane content and methane emissions into coal workings and into the atmosphere from the two most methane-gassy coal mines in Poland. The Budryk mine is one of the youngest mines in Poland, but it is the most methane-gassy as well. In 2016, the total CH4 emissions exceed 140 million of m3. This large increase in methane emissions to mine workings is primarily related to the increase in the depth of coal extraction (up to 1290 m) and, consequently, the rapid increase in the methane content in coal seams (up to 10–12 m3/Mg coaldaf). On the other hand, in the Pniówek mine, methane emission was the highest at the beginning of the study period (1986–1991). During the following years, emission decreased to the values of less than 140 million of m3, which were still one of the largest amounts of emitted methane in the entire Upper Silesian Coal Basin. The coexistence of natural factors, such as the geological structure and gas distribution, as well as mining-related factors, i.e. the depth of mining, the intensity of coal extraction determines the temporal variability of methane emissions in the studied mines.


2018 ◽  
Vol 36 ◽  
pp. 03005 ◽  
Author(s):  
Renata Patyńska ◽  
Adam Mirek ◽  
Zbigniew Burtan ◽  
Elżbieta Pilecka

In the years 2001-2015, 42 rockbursts were recorded in Polish coal mines. For the past 15 years the scale of the phenomena has been similar and ranges from 1 to 5 rockbursts per year. However, the number of recorded high energy seismic tremors of 108 and 109J (E) energy that has occurred in recent years, 2 to 5, is alarming. According to the data, 27 of tremors of E > 108 J energy that occurred between 2001 and 2015 caused 3 rockbursts. Confronting these data with seismic activity from 1989-2000, it should be noted that only 2 events out of 99 rockbursts caused tremors with energies of E>108 J. Against the background of the scale of seismic and rockburst hazards, the geological and mining conditions of the Upper Silesian Coal Basin (USCB) have been analysed, detailing the structural units in which the rockbursts occurred. On this basis, the author characterised factors that impacts on the mining excavations resulting in rockbursts that caused damage on a larger scale. These rockbursts had the characteristics of mining catastrophes and weak earthquakes not recorded in mining statistics of natural hazards of USCB so far.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1706
Author(s):  
Justyna Bała ◽  
Maciej Dwornik ◽  
Anna Franczyk

This article presents the results of automatic detection of subsidence troughs in synthetic aperture radar (SAR) interferograms. The detection of subsidence troughs is based on the circlet transform, which is able to detect features with circular shapes. Compared to other methods of detecting circles, the circular transform takes into account the finite data frequency. Moreover, the search shape is not limited to a circle but identified on the basis of a certain width. This is especially important in the case of detection of subsidence troughs whose shapes may not be similar to circles or ellipses but to their fragments. The transformation works directly on the image gradient; it does not require further binary segmentation or edge detection as in the case of other methods, e.g., the Hough transform. The entire processing process can be automated to save time and increase reliability compared to traditional methods. The proposed automatic detection method was tested on a differential interferogram that was generated based on Sentinel-1A SAR images of the Upper Silesian Coal Basin area. The test carried out showed that the proposed method is 20% more effective in detecting troughs that than the method using Hough transform.


2020 ◽  
Author(s):  
Marcin Dreger ◽  
Sławomir Kędzior

Abstract The paper presents the variability of hard coal output, methane content and methane emissions into coal workings and into the atmosphere from the two most methane-gassy coal mines in Poland, Budryk and Pniówek, which are both incorporated in the Jastrzębie Coal Company. The Budryk mine is one of the youngest mines in Poland, but it is the most methane-gassy as well. In 2016, the total CH4 emissions exceed 140 million of m3. This large increase in methane emissions to mine workings is primarily related to the increase in the depth of coal extraction (up to 1290 m) and, consequently, the rapid increase in the methane content in coal seams (up to 10-12 m3 / Mg coaldaf). On the other hand, in the Pniówek mine, methane emission was the highest at the beginning of the study period (1986-1991). During the following years emission decreased to the values of less than 140 million of m3, which were still one of the largest amounts of emitted methane in the entire Upper Silesian Coal Basin. The vertical distribution of methane content, different than in the Budryk mine, and the presence of a secondary high methane zone at the Carboniferous top, seem to be decisive for the long-term distribution of methane emissions in the Pniówek mine. The coexistence of natural factors, such as the geological structure and gas distribution, as well as mining-related factors, i.e. the depth of mining, the concentration of coal extraction determines the temporal variability of methane emissions in the studied mines.


2013 ◽  
Vol 63 (2) ◽  
pp. 271-281 ◽  
Author(s):  
Magdalena Kokowska-Pawłowska ◽  
Jacek Nowak

Abstract Kokowska-Pawłowska, M. and Nowak, J. 2013. Phosphorus minerals in tonstein; coal seam 405 at Sośnica- Makoszowy coal mine, Upper Silesia, southern Poland. Acta Geologica Polonica, 63 (2), 271-281. Warszawa. The paper presents results of research on tonstein, which constitutes an interburden in coal seam 405 at the Sośnica- Makoszowy coal mine, Makoszowy field (mining level 600 m), Upper Silesia, southern Poland. The mineral and chemical compositions of the tonstein differ from the typical compositions described earlier for tonsteins from Upper Silesia Coal Basin area. Additionally, minerals present in the tonsteins include kaolinite, quartz, kaolinitised biotite and feldspars. The presence of the phosphatic minerals apatite and goyazite has been recognized. The presence of gorceixite and crandallite is also possible. The contents of CaO (5.66 wt%) and P2O5 (6.2 wt%) are remarkably high. Analysis of selected trace elements demonstrated high contents of Sr (4937 ppm) and Ba (4300 ppm), related to the phosphatic minerals. On the basis of mineral composition the tonstein has been identified as a crystalline tonstein, transitional to a multiplied one.


Sign in / Sign up

Export Citation Format

Share Document