scholarly journals Power Scheduling for Renewable Energy Connected to the grid

2018 ◽  
Vol 64 ◽  
pp. 08008 ◽  
Author(s):  
kafazi Ismail El ◽  
Bannari Rachid ◽  
Lassioui Abdellah ◽  
Aboutafail My Othman

In this work, a scheduling strategy considering an Energy Storage System (ESS) is proposed to manage the distributed energy resources (DERs) optimally in a grid-connected hybrid PV-wind-microgrid. In order to increase the use of the renewable energy sources and ensure a full charge in the battery for the next day. The optimization problem of this study is addressed through a linear mathematical model, to minimize the cost of energy bought from the utility grid and maximize the income for selling electricity generated by hybrid PV-wind. The optimization model is tested by using a simulation of the model. The achieved results confirm the effectiveness of the proposed scheduling strategy.

Author(s):  
Agus Ramelan ◽  
Feri Adriyanto ◽  
Chico Hermanu Brillianto Apribowo ◽  
Muhammad Hamka Ibrahim ◽  
Irwan Iftadi ◽  
...  

The limited capacity of renewable energy sources in the grid utility is a challenge. Increasing the capacity of renewable energy sources is supported by energy storage in the grid. The Battery Energy Storage System (BESS) allows storing more electricity from New and Renewable Energy (EBT) sources to meet load requirements. This paper designs a techno-economic study of various battery technologies using HOMER (Hybrid Optimization Modeling Software) software simulation. Simulations are made for grid-connected photovoltaic systems in Indonesia. HOMER is used to find the energy cost ($ / kWh) for each type of battery technology and battery system size. The simulation is designed using 1MWp PV component parameters, inverter, energy storage to be compared, residental load, and connected to the grid. The results will help to determine which technology and battery size is more suitable for the system. The findings from this paper resulted in the lowest Levelized Cost Of Energy (LCOE) of $ 1.03 in solar power generation.


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


2019 ◽  
Vol 137 ◽  
pp. 01007 ◽  
Author(s):  
Sebastian Lepszy

Due to the random nature of the production, the use of renewable energy sources requires the use of technologies that allow adjustment of electricity production to demand. One of the ways that enable this task is the use of energy storage systems. The article focuses on the analysis of the cost-effectiveness of energy storage from the grid. In particular, the technology was evaluated using underground hydrogen storage generated in electrolysers. Economic analyzes use historical data from the Polish energy market. The obtained results illustrate, among other things, the proportions between the main technology modules selected optimally in technical and economic terms.


2021 ◽  
Vol 11 (18) ◽  
pp. 8484
Author(s):  
Seok-Ho Song ◽  
Jin-Young Heo ◽  
Jeong-Ik Lee

A nuclear power plant is one of the power sources that shares a large portion of base-load. However, as the proportion of renewable energy increases, nuclear power plants will be required to generate power more flexibly due to the intermittency of the renewable energy sources. This paper reviews a layout thermally integrating the liquid air energy storage system with a nuclear power plant. To evaluate the performance realistically while optimizing the layout, operating nuclear power plant conditions are used. After revisiting the analysis, the optimized performance of the proposed system is predicted to achieve 59.96% of the round-trip efficiency. However, it is further shown that external environmental conditions could deteriorate the performance. For the design of liquid air energy storage-nuclear power plant integrated systems, both the steam properties of the linked plants and external factors should be considered.


Author(s):  
Jianhui Wong ◽  
Yun Seng Lim

Electrical grid is no longer featured in a conventional way nowadays. Today, the growing of new technologies, primarily the distributed renewable energy sources and electric vehicles, has been integrated with the distribution networks causing several technical issues. As a result, the penetration of the renewable energy sources can be limited by the utility companies. Smart grid has been emerged as one of the solutions to the technical issues, hence allowing the usage of renewable and improving the energy efficiency of the electrical grid. The challenge is to develop an intelligent management system to maintain the balance between the generation and demand. This task can be performed by using energy storage system. As part of the smart grid, the deployment of energy storage system plays a critical role in stabilizing the voltage and frequency of the networks with renewable energy sources and electric vehicles. This book chapter illustrates the revolution and the roles of energy storage for improving the network performance.


Sign in / Sign up

Export Citation Format

Share Document