scholarly journals Design Considerations for the Liquid Air Energy Storage System Integrated to Nuclear Steam Cycle

2021 ◽  
Vol 11 (18) ◽  
pp. 8484
Author(s):  
Seok-Ho Song ◽  
Jin-Young Heo ◽  
Jeong-Ik Lee

A nuclear power plant is one of the power sources that shares a large portion of base-load. However, as the proportion of renewable energy increases, nuclear power plants will be required to generate power more flexibly due to the intermittency of the renewable energy sources. This paper reviews a layout thermally integrating the liquid air energy storage system with a nuclear power plant. To evaluate the performance realistically while optimizing the layout, operating nuclear power plant conditions are used. After revisiting the analysis, the optimized performance of the proposed system is predicted to achieve 59.96% of the round-trip efficiency. However, it is further shown that external environmental conditions could deteriorate the performance. For the design of liquid air energy storage-nuclear power plant integrated systems, both the steam properties of the linked plants and external factors should be considered.

2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Katarzyna Borowiec ◽  
Aaron Wysocki ◽  
Samuel Shaner ◽  
Michael S. Greenwood ◽  
Matthew Ellis

Abstract Introducing large amounts of electricity produced from variable renewable energy sources such as wind and solar decreases wholesale electricity price while increasing the volatility of the market. These conditions drive the need for peak-load power generation, while regulation requirements fuel the push for flexible power generation. The increase of variable renewable energy in the market share, along with falling natural gas prices, makes nuclear power plants less competitive. Thermal storage is being considered to increase the nuclear power plant revenue. Thermal storage increases the flexibility of the nuclear plant system without sacrificing its efficiency. There are multiple opportunities to increase the nuclear power plant revenue, including increased capacity payments, arbitrage, and ancillary services. An economic analysis was performed to investigate the revenue increase of the system with thermal storage. The investment cost was assessed, and net present value was evaluated for the considered scenarios. Two system designs were considered in the analysis: a thermal storage system using the existing power conversion infrastructure and an integrated design with thermal storage fully incorporated into the reactor system design. The preliminary analysis showed that introducing a thermal storage system is profitable for some scenarios considered. Profitability depends significantly on the storage size, output flexibility, share of variable renewable energy, and market characteristics.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Petr Neumann

<span lang="EN-GB">While increasing integration of renewable energy sources (RES), which are unregulated and difficult to predict, a large system of nuclear power plants must provide balancing peaks in the production of renewable energy. </span><span><span lang="EN">It is also important to simulate </span></span><span lang="EN-GB">the rapid changes in the power of individual </span><span lang="EN">large Nuclear Power Plant</span><span lang="EN-GB"> (NPP) units, and for these regimes to train operators of nuclear units. Therefore the paper is aimed to i<span>sland operations of more parallel electric</span></span><span><span lang="EN">synchronous generators</span></span><span lang="EN"> c<span>onnected to one</span> s<span>ubstation of a power grid.</span></span>


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


Author(s):  
Jianhui Wong ◽  
Yun Seng Lim

Electrical grid is no longer featured in a conventional way nowadays. Today, the growing of new technologies, primarily the distributed renewable energy sources and electric vehicles, has been integrated with the distribution networks causing several technical issues. As a result, the penetration of the renewable energy sources can be limited by the utility companies. Smart grid has been emerged as one of the solutions to the technical issues, hence allowing the usage of renewable and improving the energy efficiency of the electrical grid. The challenge is to develop an intelligent management system to maintain the balance between the generation and demand. This task can be performed by using energy storage system. As part of the smart grid, the deployment of energy storage system plays a critical role in stabilizing the voltage and frequency of the networks with renewable energy sources and electric vehicles. This book chapter illustrates the revolution and the roles of energy storage for improving the network performance.


Author(s):  
Sammy Houssainy ◽  
Reza Baghaei Lakeh ◽  
H. Pirouz Kavehpour

Human activity is overloading our atmosphere with carbon dioxide and other global warming emissions. These emissions trap heat, increase the planet’s temperature, and create significant health, environmental, and climate issues. Electricity production accounts for more than one-third of U.S. global warming emissions, with the majority generated by coal-fired power plants. These plants produce approximately 25 percent of total U.S. global warming emissions. In contrast, most renewable energy sources produce little to no global warming emissions. Unfortunately, generated electricity from renewable sources rarely provides immediate response to electrical demands, as the sources of generation do not deliver a regular supply easily adjustable to consumption needs. This has led to the emergence of storage as a crucial element in the management of energy, allowing energy to be released into the grid during peak hours and meet electrical demands. Compressed air energy storage can potentially allow renewable energy sources to meet electricity demands as reliably as coal-fired power plants. Most compressed air energy storage systems run at very high pressures, which possess inherent problems such as equipment failure, high cost, and inefficiency. This research aims to illustrate the potential of compressed air energy storage systems by illustrating two different discharge configurations and outlining key variables, which have a major impact on the performance of the storage system. Storage efficiency is a key factor to making renewable sources an independent form of sustainable energy. In this paper, a comprehensive thermodynamic analysis of a compressed air energy storage system is presented. Specifically, a detailed study of the first law of thermodynamics of the entire system is presented followed by a thorough analysis of the second law of thermodynamics of the complete system. Details of both discharge and charge cycles of the storage system are presented. The first and second law based efficiencies of the system are also presented along with parametric studies, which demonstrates the effects of various thermodynamic cycle variables on the total round-trip efficiency of compressed air energy storage systems.


2019 ◽  
Vol 139 ◽  
pp. 01002 ◽  
Author(s):  
Kahraman Allaev ◽  
Tokhir Makhmudov

The data on the current state of energy in Uzbekistan are given. The need to diversify the structure of the energy balance of the republic is shown, which ensures the energy security of the state in the medium and long term. It is argued that the construction of a nuclear power plant in Uzbekistan is not only expedient, but also necessary. In the future, renewable energy and nuclear power plants will become the basis of energy in Uzbekistan.


Sign in / Sign up

Export Citation Format

Share Document