scholarly journals Design and setup of a low calorific SOFC off-gas combustion chamber for a pressurized MGT hybrid power plant test rig

2019 ◽  
Vol 113 ◽  
pp. 02016
Author(s):  
Timo Lingstädt ◽  
Felix Grimm ◽  
Peter Kutne ◽  
Manfred Aigner

A demonstrator system for a hybrid power plant is currently being built at DLR, designed for an electrical power output level of 30 kW. Since the very low energy dense exhaust gas of the fuel cell anode side represents the fuel for the combustion chamber in this application, a low calorific SOFC off-gas combustor was developed at DLR specifically for this use case. With thorough investigations on the atmospheric test rig, the expected operational range of the combustor was quantified in preceding works. Now, a novel machine design, including dilution air with an adjustable air split configuration is derived to validate the gathered information on the micro gas turbine test rig under pressurized machine conditions. This work explains the design of the combustion system and addresses the different design features specifically implemented for this use case. Since simplifications had to be made for the atmospheric combustor prototype, a significant positive influence on the operational envelope is expected with the transition to the machine configuration.

2019 ◽  
Vol 113 ◽  
pp. 02012
Author(s):  
Martina Hohloch ◽  
Melanie Herbst ◽  
Anna Marcellan ◽  
Timo Lingstädt ◽  
Thomas Krummrein ◽  
...  

A hybrid power plant consisting of a micro gas turbine (MGT) and a solid oxide fuel cell (SOFC) is a promising technology to reach the demands for future power plants. DLR aims to set up a MGT/SOFC hybrid power plant demonstrator based on a 3 kWel MTT EnerTwin micro gas turbine and an SOFC module with an electrical power output of 30 kWel from Sunfire. For the detailed investigation of the subsystems under hybrid conditions two separate test rigs are set up, one in which the MGT is connected to an emulator of the SOFC and vice versa. The paper introduces the set-up and the functionalities of the MGT based test rig. The special features are highlighted and the possibilities of the cyber physical system for emulation of a hybrid system are explained.


Author(s):  
Martina Hohloch ◽  
Andreas Huber ◽  
Manfred Aigner

The main topic of the paper is the experimental investigation of a solid oxide fuel cell (SOFC) / micro gas turbine (MGT) hybrid power plant test rig. This comprises the proof of concept, the characterization of the operational range and the influence of the coupling on the MGT. The operational concept of the hybrid power plant is designed to reach a maximum flexibility in electrical power output. Therefore the power plant is operated at different MGT shaft speeds and electrical power outputs of the SOFC, thus leading to different SOFC temperatures. Instead of a real fuel cell an emulator was developed and built to emulate the fluid dynamic and thermodynamic behavior of a real SOFC. The test rig is based on a Turbec T100PH micro gas turbine. A specially designed interface connects the facility to the tubing system and the SOFC emulator. For the present investigation the SOFC emulator has been equipped with a gas preheater. It emulates the varying heat output of the fuel cell. The gas preheater is composed of a natural gas combustor based on the FLOX® technology, with a swirl-stabilized pilot stage and allows a wide range of emulating different SOFC outlet temperatures. In addition installations have been integrated into a pressure vessel, representing the SOFC cathode volume, to analyze the increase in residence time and pressure loss. Initially three different configurations of the test rig, no SOFC emulator – tube only, SOFC emulator with pressure vessels and fully equipped SOFC emulator (pressure vessels, installations and gas preheater) are compared regarding the influence of the different volumes, residence times and pressure losses. The operating range of the test rig equipped with gas preheater in cold (no fuel) as well as in hot conditions is investigated. As the velocity at the entrance of the gas turbine combustor increases with increased fuel cell outlet temperature the surge margin is strongly influenced. The operating range was determined for different shaft speeds and preheating (SOFC outlet) temperatures. Finally the transient behavior of the gas preheater and its impact on the MGT is analyzed. The results provide the required basis to implement a cyber physical system, in which the SOFC emulator is controlled by a SOFC model, as well as the basis for the real coupling of MGT and SOFC.


2019 ◽  
Vol 113 ◽  
pp. 02006
Author(s):  
Anna Marcellan ◽  
Alessio Abrassi ◽  
Marius Tomberg

A hybrid power plant combining a solid oxide fuel cell (SOFC) and a micro gas turbine (MGT) is a suitable technology solution for decentralized energy production utilizing natural gas and biogas. Despite having high electrical efficiency and low emissions, the dynamic interactions between components can lead to damages of the system if a comprehensive control strategy is not applied. Before building a coupled hybrid power plant demonstrator, the “hybrid system emulators” approach is followed to solve any integration issues. A test rig consisting of an MGT and emulated SOFC is developed. The dynamics of the SOFC are reproduced by a real time model. The created cyber-physical system provides an effective platform to validate and optimize the control concepts for the future hybrid demonstrator by adding the complexity of the hybrid plant to the MGT test rig. The ability to develop and test the control strategy on such a system dramatically reduces the technology risk and increases the chances of success for the demonstrator operation.


Author(s):  
Anna Marcellan ◽  
Martina Hohloch ◽  
Melanie Herbst ◽  
Timo Lingstädt ◽  
Thomas Krummrein ◽  
...  

Author(s):  
Martina Hohloch ◽  
Andreas Huber ◽  
Manfred Aigner

The main topic of the paper is the discussion of the operational behavior of the solid oxide fuel cell (SOFC)/micro gas turbine (MGT) hybrid power plant test rig with the pressure vessels of the SOFC emulator. In the first part a brief introduction to the test rig and its components is given. In the arrangement of the test rig the MGT is connected via an interface to the tubing system. Here, the preheated air after the recuperator can be led either to the emulator or via a bypass tube directly to the MGT. Furthermore, there is a direct connection between the compressor outlet and emulator for the startup and shutdown procedure. The facility is equipped with detailed instrumentation, including mass flow meters, thermocouples and pressure probes. In the second part of the paper the characterization of the hybrid power plant test rig is shown. To analyze the thermodynamic and fluid dynamic impact of the coupling elements various studies were carried out. Hereby, the influence of the coupling elements on the operational behavior, system stability and system performance of the micro gas turbine is shown for stationary load points, as well as during transient maneuvers like startup, load-change and shutdown. To avoid critical operating conditions limitations were defined and emergency maneuvers were developed and tested. Out of these investigations an operating concept for the hybrid power plant test rig can be derived.


Author(s):  
Martina Hohloch ◽  
Axel Widenhorn ◽  
Dominik Lebku¨chner ◽  
Tobias Panne ◽  
Manfred Aigner

Within the scope of a hybrid power plant project a micro gas turbine test rig was developed and is actually under construction at the DLR Institute of Combustion Technology. The test rig consists of a Turbec T100PH micro gas turbine and the required piping system for the hybrid application. Instead of a real solid oxide fuel cell (SOFC) stack a fuel cell simulator is used to avoid any risks for the sensitive and expensive real device. This simulator is able to emulate the SOFC interface conditions. The present paper reports the underlying pressurized hybrid power plant cycle, the setup of the test rig and the selection of the subsystems. Initially the micro gas turbine, equipped with a detailed instrumentation, was analyzed separately. First experimental data obtained with the micro gas turbine are presented.


2018 ◽  
Vol 13 (2) ◽  
pp. 107
Author(s):  
Flur Ismagilov ◽  
Vajcheslav Vavilov ◽  
Oksana Yushkova ◽  
Vladimir Bekuzin ◽  
Alexey Veselov

2019 ◽  
Vol 8 (4) ◽  
pp. 9449-9456

This paper proposes the reliability index of wind-solar hybrid power plants using the expected energy not supplied method. The location of this research is wind-solar hybrid power plants Pantai Baru, Bantul, Special Region of Yogyakarta, Indonesia. The method to determine the reliability of the power plant is the expected energy not supplied (EENS) method. This analysis used hybrid plant operational data in 2018. The results of the analysis have been done on the Pantai Baru hybrid power plant about reliability for electric power systems with EENS. The results of this study can be concluded that based on the load duration curve, loads have a load more than the operating kW of the system that is 99 kW. In contrast, the total power contained in the Pantai Baru hybrid power plant is 90 kW. This fact makes the system forced to release the load. The reliability index of the power system in the initial conditions, it produces an EENS value in 2018, resulting in a total value of 2,512% or 449 kW. The EENS value still does not meet the standards set by the National Electricity Market (NEM), which is <0.002% per year. Based on this data, it can be said that the reliability of the New Coast hybrid power generation system in 2018 is in the unreliable category.


Sign in / Sign up

Export Citation Format

Share Document