scholarly journals A Test Rig for the Experimental Investigation of a MGT/SOFC Hybrid Power Plant Based on a 3kWel Micro Gas Turbine

2019 ◽  
Vol 113 ◽  
pp. 02012
Author(s):  
Martina Hohloch ◽  
Melanie Herbst ◽  
Anna Marcellan ◽  
Timo Lingstädt ◽  
Thomas Krummrein ◽  
...  

A hybrid power plant consisting of a micro gas turbine (MGT) and a solid oxide fuel cell (SOFC) is a promising technology to reach the demands for future power plants. DLR aims to set up a MGT/SOFC hybrid power plant demonstrator based on a 3 kWel MTT EnerTwin micro gas turbine and an SOFC module with an electrical power output of 30 kWel from Sunfire. For the detailed investigation of the subsystems under hybrid conditions two separate test rigs are set up, one in which the MGT is connected to an emulator of the SOFC and vice versa. The paper introduces the set-up and the functionalities of the MGT based test rig. The special features are highlighted and the possibilities of the cyber physical system for emulation of a hybrid system are explained.

Author(s):  
Martina Hohloch ◽  
Andreas Huber ◽  
Manfred Aigner

The main topic of the paper is the experimental investigation of a solid oxide fuel cell (SOFC) / micro gas turbine (MGT) hybrid power plant test rig. This comprises the proof of concept, the characterization of the operational range and the influence of the coupling on the MGT. The operational concept of the hybrid power plant is designed to reach a maximum flexibility in electrical power output. Therefore the power plant is operated at different MGT shaft speeds and electrical power outputs of the SOFC, thus leading to different SOFC temperatures. Instead of a real fuel cell an emulator was developed and built to emulate the fluid dynamic and thermodynamic behavior of a real SOFC. The test rig is based on a Turbec T100PH micro gas turbine. A specially designed interface connects the facility to the tubing system and the SOFC emulator. For the present investigation the SOFC emulator has been equipped with a gas preheater. It emulates the varying heat output of the fuel cell. The gas preheater is composed of a natural gas combustor based on the FLOX® technology, with a swirl-stabilized pilot stage and allows a wide range of emulating different SOFC outlet temperatures. In addition installations have been integrated into a pressure vessel, representing the SOFC cathode volume, to analyze the increase in residence time and pressure loss. Initially three different configurations of the test rig, no SOFC emulator – tube only, SOFC emulator with pressure vessels and fully equipped SOFC emulator (pressure vessels, installations and gas preheater) are compared regarding the influence of the different volumes, residence times and pressure losses. The operating range of the test rig equipped with gas preheater in cold (no fuel) as well as in hot conditions is investigated. As the velocity at the entrance of the gas turbine combustor increases with increased fuel cell outlet temperature the surge margin is strongly influenced. The operating range was determined for different shaft speeds and preheating (SOFC outlet) temperatures. Finally the transient behavior of the gas preheater and its impact on the MGT is analyzed. The results provide the required basis to implement a cyber physical system, in which the SOFC emulator is controlled by a SOFC model, as well as the basis for the real coupling of MGT and SOFC.


2019 ◽  
Vol 113 ◽  
pp. 02016
Author(s):  
Timo Lingstädt ◽  
Felix Grimm ◽  
Peter Kutne ◽  
Manfred Aigner

A demonstrator system for a hybrid power plant is currently being built at DLR, designed for an electrical power output level of 30 kW. Since the very low energy dense exhaust gas of the fuel cell anode side represents the fuel for the combustion chamber in this application, a low calorific SOFC off-gas combustor was developed at DLR specifically for this use case. With thorough investigations on the atmospheric test rig, the expected operational range of the combustor was quantified in preceding works. Now, a novel machine design, including dilution air with an adjustable air split configuration is derived to validate the gathered information on the micro gas turbine test rig under pressurized machine conditions. This work explains the design of the combustion system and addresses the different design features specifically implemented for this use case. Since simplifications had to be made for the atmospheric combustor prototype, a significant positive influence on the operational envelope is expected with the transition to the machine configuration.


Author(s):  
Anna Marcellan ◽  
Martina Hohloch ◽  
Melanie Herbst ◽  
Timo Lingstädt ◽  
Thomas Krummrein ◽  
...  

Author(s):  
Martina Hohloch ◽  
Andreas Huber ◽  
Manfred Aigner

The main topic of the paper is the discussion of the operational behavior of the solid oxide fuel cell (SOFC)/micro gas turbine (MGT) hybrid power plant test rig with the pressure vessels of the SOFC emulator. In the first part a brief introduction to the test rig and its components is given. In the arrangement of the test rig the MGT is connected via an interface to the tubing system. Here, the preheated air after the recuperator can be led either to the emulator or via a bypass tube directly to the MGT. Furthermore, there is a direct connection between the compressor outlet and emulator for the startup and shutdown procedure. The facility is equipped with detailed instrumentation, including mass flow meters, thermocouples and pressure probes. In the second part of the paper the characterization of the hybrid power plant test rig is shown. To analyze the thermodynamic and fluid dynamic impact of the coupling elements various studies were carried out. Hereby, the influence of the coupling elements on the operational behavior, system stability and system performance of the micro gas turbine is shown for stationary load points, as well as during transient maneuvers like startup, load-change and shutdown. To avoid critical operating conditions limitations were defined and emergency maneuvers were developed and tested. Out of these investigations an operating concept for the hybrid power plant test rig can be derived.


Author(s):  
Martina Hohloch ◽  
Axel Widenhorn ◽  
Dominik Lebku¨chner ◽  
Tobias Panne ◽  
Manfred Aigner

Within the scope of a hybrid power plant project a micro gas turbine test rig was developed and is actually under construction at the DLR Institute of Combustion Technology. The test rig consists of a Turbec T100PH micro gas turbine and the required piping system for the hybrid application. Instead of a real solid oxide fuel cell (SOFC) stack a fuel cell simulator is used to avoid any risks for the sensitive and expensive real device. This simulator is able to emulate the SOFC interface conditions. The present paper reports the underlying pressurized hybrid power plant cycle, the setup of the test rig and the selection of the subsystems. Initially the micro gas turbine, equipped with a detailed instrumentation, was analyzed separately. First experimental data obtained with the micro gas turbine are presented.


Biomass fuel as carbon neutral, abundant, domestic, cost effective is being reconsidered to fuel-up the power plant to produce electricity in clean way. But utilization of biomass fuel directly in existing conventional power plant causes problem in turbine such as erosion, hot corrosion, clogging and depositions [1]. As such combustion of biomass fuel outside the primary cycle eradicates potential hazards for turbine. In such a case indirectly fired micro gas turbine opens a door to biomass fuel as this technology is free from negative aspects of direct combustion as well as making micro gas turbine feasible to generate electricity in small scale at non-grid areas for individual consumer or group of consumers. In this research, the effect of different types of biomass fuel on operating parameters as well as on output electrical power of externally fired micro gas turbine (EFmGT)has been analyzed. The biomass fuels are categorized on the basis of air to fuel ratio (AFR) using stoichiometry combustion theory. It is found from results that parameters like air mass flow rate, compression ratio, heat exchanger effectiveness, turbine inlet temperature, combustion temperature, and temperature difference in heat exchanger affect the performance of EFmGT. Also types of biomass fuel have substantial impacts on these performance parameters as well as on electrical power output of EFmGT cycle.


2019 ◽  
Vol 113 ◽  
pp. 02006
Author(s):  
Anna Marcellan ◽  
Alessio Abrassi ◽  
Marius Tomberg

A hybrid power plant combining a solid oxide fuel cell (SOFC) and a micro gas turbine (MGT) is a suitable technology solution for decentralized energy production utilizing natural gas and biogas. Despite having high electrical efficiency and low emissions, the dynamic interactions between components can lead to damages of the system if a comprehensive control strategy is not applied. Before building a coupled hybrid power plant demonstrator, the “hybrid system emulators” approach is followed to solve any integration issues. A test rig consisting of an MGT and emulated SOFC is developed. The dynamics of the SOFC are reproduced by a real time model. The created cyber-physical system provides an effective platform to validate and optimize the control concepts for the future hybrid demonstrator by adding the complexity of the hybrid plant to the MGT test rig. The ability to develop and test the control strategy on such a system dramatically reduces the technology risk and increases the chances of success for the demonstrator operation.


Author(s):  
Martina Hohloch ◽  
Jan Zanger ◽  
Axel Widenhorn ◽  
Manfred Aigner

For the development of efficient and fuel flexible decentralized power plant concepts a test rig based on the Turbec T100 micro gas turbine is operated at the DLR Institute of Combustion Technology. This paper reports the characterization of the transient operating performance of the micro gas turbine by selected transient maneuvers like start-up, load change and shut-down. The transient maneuvers can be affected by specifying either the electrical power output or the turbine speed. The impact of the two different operation strategies on the behavior of the engine is explained. At selected stationary load points the performance of the gas turbine components is characterized by using the measured thermodynamic and fluid dynamic quantities. In addition the impact of different turbine outlet temperatures on the performance of the gas turbine is worked out. The resulting data set can be used for validation of numerical simulation and as a base for further investigations on micro gas turbines.


Author(s):  
Martina Hohloch ◽  
Andreas Huber ◽  
Manfred Aigner

The present work deals with the analysis of operational concepts for a solid oxide fuel cell/micro gas turbine (SOFC/MGT) hybrid power plant based on a test rig at the DLR, Institute of Combustion Technology. Here, a Turbec T100 MGT and a fuel cell emulator are used. The emulator is composed of two pressure vessels. The first represents the cathode volume of the fuel cell to simulate the residence time and pressure loss. The second is equipped with a natural gas combustor to emulate the varying heat input of the fuel cell. The MGT and the SOFC are connected via different piping paths. The procedures start-up, load change, and shutdown are analyzed in matters of temperature gradients, pressure gradients, and fluctuations, as well as the air mass flow provided at the interconnections to the coupling elements. To achieve the required inlet conditions of the SOFC, transient operations, using the different piping paths, are investigated. Concepts for heating up and cooling the SOFC using hot air from the recuperator and relatively cold air from the compressor outlet are experimentally tested and characterized. Selected critical situations and their effect on the SOFC are investigated. An emergency operation and its impact on both subsystems and limitations are shown. Further operational limits of the MGT control system and power electronic were observed and analyzed. Based on the experimental results, the applicability of the used MGT procedures in a hybrid power plant was reconsidered. Finally, adaptions and strategies for the operational concept are derived and discussed.


Author(s):  
Torsten Methling ◽  
Marina Braun-Unkhoff ◽  
Uwe Riedel

Biomass is a clean, renewable energy source with a large potential to contribute significantly to power generation, promising a more environmentally friendly production of electricity in future, with lower greenhouse gas emissions. A large variety of biomass feedstock exists, including agricultural and biomass residues and by-products, with wood, sludge, and waste among them. Biomass can be used directly to generate electricity if converted to more user-friendly sources of energy, e.g. by fermentation producing mainly methane (biogas) and by gasification leading mostly to hydrogen and carbon monoxide (syngas), allowing a more efficient use of the product gases compared to direct combustion, besides further advantages, with less amounts of ash and corrosive species. The resulting product gases can be burned in small to large scale gas turbines, stand alone, process integrated or in combined cycles. In a hybrid power plant, an increase of the electrical efficiency of small gas turbines to more than 50 % can be reached, by coupling a gasifier or biogas reactor with a fuel cell (FC) and a micro gas turbine. To widen the acceptable range in the variation of fuel composition and conditions and to ensure a reliable and more efficient operation, it is of outmost importance to expand our knowledge on biogenic gas mixtures with respect to modeling capabilities e.g. of major combustion properties, thus enabling predictive calculations. The present work is dealing with the use of representative biogenic gas mixtures for decentralized power production. The concept of coupling a gasifier or biogas reactor with a fuel cell and a micro gas turbine (hybrid power plant) is followed. The product gases are stemming from the fermentation of sludge and algae as well as from the gasification of their residues and wood, in addition. Their combustion behavior — lower heating value (LHV), Wobbe index, adiabatic flame temperature, laminar flame speed, and ignition delay time — is calculated for the relevant parameters — fuel-air ratio, pressure — and discussed with respect to the intended use.


Sign in / Sign up

Export Citation Format

Share Document