scholarly journals Control Method for Three-Phase Grid-Connected Inverter PV System Employing Unity Power Factor (UPF) Strategy in Microgrid

2019 ◽  
Vol 115 ◽  
pp. 01006
Author(s):  
Amirreza Naderipour ◽  
Zulkurnain Abdul-Malek ◽  
Vigna K. Ramachandaramurthy ◽  
Josep. M. Guerrero

Microgrids (MGs) are developing owing to the rapidly growing distributed power generation systems. The MG controls the flexibility of the network to ensure the requirements of reliability and power quality are satisfied. A typical MG normally consists of dispersed generation resources, which are connected by power electronic inverters, storages, and non-linear loads. This study deals with a compensation control method of a photovoltaic grid-connected inverter using unity power factor (UPF) strategy in MG. In this case, the proposed control method can provide output currents without distortion and with the UPF. Further, it is able to increase the inverter output current to approximately 19 times of the value obtained conventionally. The proposed control method can be applied to three-phase grid interfaced converters such as DG inverters and can also be easily integrated into the conventional control scheme without installation of extra hardware. A theoretical analysis is presented and the performance of the proposed control method for a grid-connected inverter in a MG is evaluated through simulation results.

2012 ◽  
Vol 241-244 ◽  
pp. 636-640
Author(s):  
Wu Wu Tang ◽  
Liang Liang Chen ◽  
Hong Xu Yin ◽  
Hao Dong

This paper developed a mathematical model of three-phase PV grid-connected inverter, and studied the grid-connected current control method based on PI control in synchronous rotating reference frame. Simulation and experimental results from the prototype of 30kW three-phase PV grid-connected inverter proved the correctness and the feasibility of the control strategy, and this grid-connected inverter can operate at the unity power factor state with a nice dynamic performance, and the output current has high sinusoidal and low harmonic content as well as good symmetry.


2018 ◽  
Vol 11 (3) ◽  
pp. 133
Author(s):  
Mohammed El Malah ◽  
Abdellfattah Ba-razzouk ◽  
M’hammed Guisser ◽  
Elhassane Abdelmounim ◽  
Mhamed Madark ◽  
...  

2013 ◽  
Vol 765-767 ◽  
pp. 2494-2497
Author(s):  
Fang Ping Zhao ◽  
Yong Yang

The paper propose a new control of a three-phase three-level neutral-point-clamped (NPC) pulse width modulated (PWM) inverter in photovoltaic generation systems. The control scheme is mainly based on voltage-oriented control (VOC) with an improved maximum power point (MPP) tracking (MPPT). A cascaded control structure with an outer dc link voltage control loop and an inner current control loop is used. The currents are controlled in a synchronous dq reference frame using a decoupled feedback control. Furthermore, in order to achieve a unity power factor, the q-axis current reference is set to zero. The experimental results have proven an excellent performance and verified the validity of proposed system.


Author(s):  
Soukaina Essaghir ◽  
Mohamed Benchagra ◽  
Noureddine El barbri

This paper presents a current control technique for a three-phase grid-connected DC /AC inverter which is used in photovoltaic systems. A Proportional-Resonant (PR) controller is used for replacing the conventional Proportional-Integral (PI) controller in this system. By comparison with the conventional PI control method, the PR control can introduce an infinite gain at the fundamental frequency and hence can achieve zero steady-state error. The proposed model is based on two control loops: the first control loop regulates DC link voltage and the second one is used to keep the injected current to the grid in phase with the voltage by means of a Phase Locked Loop (PLL) in order to achieve a unit power factor and to adjust the output power as required. In order to examine the effectiveness of the suggested control, a simulation using the Matlab/Simulink software has been done and it’s concluded from the simulation results that the presented control by using the PR controller can be able to maintain maximum active power and to keep always a unity power factor despite variation load.


Sign in / Sign up

Export Citation Format

Share Document