scholarly journals Virtual power plants - types and development opportunities

2019 ◽  
Vol 137 ◽  
pp. 01044
Author(s):  
Arkadiusz Przychodzień

Modern power engineering meets new challenges. With the development of new energy production and storage technologies, creates new demands for energy services. To support this development, it is necessary to implement new teleinformatic systems that will allow for resource management. Such systems are called Virtual Power Plants (VPP). There are many definitions of this type of solutions due to the very wide range of possible applications. VPPs can be developed by many types of entities, e.g. distribution system operators, electricity generators, energy clusters. The ability to build a system based on modules allows you to customize the system to user’s needs. An opportunity for the development of VPP will be a package “Clean energy for all Europeans” (so called “Winter package”) that introduces regulations that allow for the development of renewable energy sources, including prosumers, and enables an active participation in the energy market for energy consumers. In addition, more stringent requirements for balancing production and energy consumption are introduced, requiring greater balancing accuracy.

Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 67
Author(s):  
Rakkyung Ko ◽  
Sung-Kwan Joo

Virtual power plants (VPPs) have been widely researched to handle the unpredictability and variable nature of renewable energy sources. The distributed energy resources are aggregated to form into a virtual power plant and operate as a single generator from the perspective of a system operator. Power system operators often utilize the incentives to operate virtual power plants in desired ways. To maximize the revenue of virtual power plant operators, including its incentives, an optimal portfolio needs to be identified, because each renewable energy source has a different generation pattern. This study proposes a stochastic mixed-integer programming based distributed energy resource allocation method. The proposed method attempts to maximize the revenue of VPP operators considering market incentives. Furthermore, the uncertainty in the generation pattern of renewable energy sources is considered by the stochastic approach. Numerical results show the effectiveness of the proposed method.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6200
Author(s):  
Tomasz Popławski ◽  
Sebastian Dudzik ◽  
Piotr Szeląg ◽  
Janusz Baran

This article describes problems related to the operation of a virtual micro power plant at the Faculty of Electrical Engineering (FEE), Czestochowa University of Technology (CUT). In the era of dynamic development of renewable energy sources, it is necessary to create alternative electricity management systems for existing power systems, including power transmission and distribution systems. Virtual power plants (VPPs) are such an alternative. So far, there has been no unified standard for a VPP operation. The article presents components that make up the VPP at the FEE and describes their physical and logical structure. The presented solution is a combination of several units operating in the internal power grid of the FEE, i.e., wind turbines, energy storage (ES), photovoltaic panels (PV) and car charging stations. Their operation is coordinated by a common control system. One of the research goals described in the article is to optimize the operation of these components to minimize consumption of the electric energy from the external supply network. An analysis of data from the VPP management system was carried out to create mathematical models for prediction of the consumed power and the power produced by the PVs. These models allowed us to achieve the assumed objective. The article also presents the VPP data processing results in terms of detecting outliers and missing values. In addition to the issues discussed above, the authors also proposed to apply the Prophet model for short-term forecasting of the PV farm electricity production. It is a statistical model that has so far been used for social and business research. The authors implemented it effectively for technical analysis purposes. It was shown that the results of the PV energy production forecasting using the Prophet model are acceptable despite occurrences of missing data in the investigated time series.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3208 ◽  
Author(s):  
Xiangyu Li ◽  
Dongmei Zhao ◽  
Baicang Guo

In order to build an active distribution system with multi virtual power plants (VPP), a decentralized two-stage stochastic dispatching model based on synchronous alternating direction multiplier method (SADMM) was proposed in this paper. Through the integration of distributed energy and large-scale electric vehicles (EV) in the distribution network by VPP group, coordinative complementarity, and global optimization were realized. On the premise of energy autonomy management of active distribution network (AND) and VPP, after ensuring the privacy of stakeholders, the power of tie-line was taken as decoupling variable based on SADMM. Furthermore, without the participation of central coordinators, the optimization models of VPPs and distribution networks were decoupled to achieve fully decentralized optimization. Aiming at minimizing their own operating costs, the VPPs aggregate distributed energy and large-scale EVs within their jurisdiction to interact with the upper distribution network. On the premise of keeping operation safe, the upper distribution network formulated the energy interaction plan with each VPP, and then, the global energy optimization management of the entire distribution system and the decentralized autonomy of each VPP were achieved. In order to improve the stochastic uncertainty of distributed renewable energy output, a two-stage stochastic optimization method including pre-scheduling stage and rescheduling stage was adopted. The pre-scheduling stage was used to arrange charging and discharging plans of EV agents and output plans of micro gas turbines. The rescheduling stage was used to adjust the spare resources of micro gas turbines to deal with the uncertainty of distributed wind and light. An example of active distribution system with multi-VPPs was constructed by using the improved IEEE 33-bus system, then the validity of the model was verified.


2020 ◽  
Vol 8 ◽  
Author(s):  
Fengzhang Luo ◽  
Xin Yang ◽  
Wei Wei ◽  
Tianyu Zhang ◽  
Liangzhong Yao ◽  
...  

Distributed energy resources (DERs) have been widely involved in the optimal dispatch of distribution systems which benefit from the characteristics of reliability, economy, flexibility, and environmental protection. And distribution systems are gradually transforming from passive networks to active distribution networks. However, it is difficult to manage DERs effectively because of their wide distribution, intermittency, and randomness. Virtual power plants (VPPs) can not only coordinate the contradiction between distribution systems and DERs but also consider the profits of DERs, which can realize the optimal dispatch of distribution systems effectively. In this paper, a bi-level dispatch model based on VPPs is proposed for load peak shaving and valley filling in distribution systems. The VPPs consist of distributed generations, energy storage devices, and demand response resources. The objective of the upper-level model is smoothing load curve, and the objective of the lower-level model is maximizing the profits of VPPs. Meanwhile, we consider the quadratic cost function to quantify the deviation between the actual output and the planned output of DGs. The effectiveness of the bi-level dispatch model in load shifting and valley filling is proved by various scenarios. In addition, the flexibility of the model in participating in distribution system dispatch is also verified.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 974
Author(s):  
Michał Jasiński ◽  
Tomasz Sikorski ◽  
Dominika Kaczorowska ◽  
Jacek Rezmer ◽  
Vishnu Suresh ◽  
...  

One of the recent trends that concern renewable energy sources and energy storage systems is the concept of virtual power plants (VPP). The majority of research now focuses on analyzing case studies of VPP in different issues. This article presents the investigation that is based on a real VPP. That VPP operates in Poland and consists of hydropower plants (HPP), as well as energy storage systems (ESS). For specific analysis, cluster analysis, as a representative technique of data mining, was selected for power quality (PQ) issues. The used data represents 26 weeks of PQ multipoint synchronic measurements for 5 related to VPP points. The investigation discusses different input databases for cluster analysis. Moreover, as an extension to using classical PQ parameters as an input, the application of the global index was proposed. This enables the reduction of the size of the input database with maintaining the data features for cluster analysis. Moreover, the problem of the optimal number of cluster selection is discussed. Finally, the assessment of clustering results was performed to assess the VPP impact on PQ level.


2021 ◽  
Vol 11 (1) ◽  
pp. 83-94
Author(s):  
Zahid Ullah ◽  
Nayyar Hussain Mirjat ◽  
Muhammad Baseer

. In this study, a robust optimisation method (ROM) is proposed with aim to achieve optimal scheduling of virtual power plants (VPPs) in the day-ahead electricity markets where electricity prices are highly uncertain. Our VPP is a collection of various distributed energy resources (DERs), flexible loads, and energy storage systems that are coordinated and operated as a single entity. In this study, an offer and bid-based energy trading mechanism is proposed where participating members in the VPP setting can sell or buy to/from the day-ahead electricity market to maximise social welfare (SW). SW is defined as the maximisation of end-users benefits and minimisation of energy costs. The optimisation problem is solved as a mixed-integer linear programming model taking the informed decisions at various levels of uncertainty of the market prices. The benefits of the proposed approach are consistency in solution accuracy and traceability due to less computational burden and this would be beneficial for the VPP operators. The robustness of the proposed mathematical model and method is confirmed in a case study approach using a distribution system with 18-buses. Simulation results illustrate that in the highest robustness scenario, profit is reduced marginally, however, the VPP showed robustness towards the day-ahead market (DAM) price uncertainty


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2365 ◽  
Author(s):  
Dodiek Candra ◽  
Kilian Hartmann ◽  
Michael Nelles

The burden of excess energy from the high renewable energy sources (RES) share creates a significant reduction of residual load for the future, resulting in reduced market prices. The higher the share of stochastic RES, the more often the price will be 0 €/MWh. The power market needs new methods to solve these problems. The development of virtual power plants (VPPs) is aimed at solving techno-economic problems with an increasing share of RES in the power market. This study analyses a possible implementation of stochastic and deterministic RES in a VPP to generate secured power, which can be implemented in the European Power Exchange (EPEX)/European Energy Exchange (EEX) power market using existing market products. In this study, the optimal economic VPP configuration for an RES-based power plant is investigated and implemented into standard power market products. The results show that the optimal economic VPP configuration for different market products varies, depending on the energy availability and the marginal costs of the VPP components. The size of the VPP components is positively correlated to the components’ share of the energy generated. It was also found that projecting or implementing VPPs in Germany at current market prices (EPEX/EEX prices) is not yet economically feasible for a small share of market products. However, the secured power can be marketed on the SPOT and in the futures market with higher and more stable prices compared with the status quo.


Author(s):  
Alexander Dudko ◽  
Tatiana Endrjukaite ◽  
Leon Roose

As the electricity generation is shifting to renewable energy sources (RES), the grid infrastructure faces multiple challenges, such as intermittency and volatility of a wide range RES. A high penetration of renewables requires profound changes to the current energy distribution system. The conventional grid is increasingly becoming a bottleneck for expanding the share of RES because of its rigid architecture, which is built around centralized energy source. We propose a new energy exchange model for a routed energy distribution system, which can perform electricity routing based on smart routing algorithms and presented protocols. We utilize a concept of an energy router device that controls energy flows and utilizes protocols stack to smartly route the energy between houses in the grid. This paper describes current results with experimental network of Maui village with multiple houses interconnected through energy routers.


Sign in / Sign up

Export Citation Format

Share Document