scholarly journals Improvement of algorithms for voltage circuits fault detection in relay protection terminal of 6-35 kV electrical networks

2019 ◽  
Vol 139 ◽  
pp. 01061
Author(s):  
Vladimir Vukolov ◽  
Mikhail Obalin ◽  
Anton Petrov

Issues of increase of consumer power supply reliability by prevention of protection device false operation and unreasonable tripping of the protected network element at malfunction of measuring voltage transformer secondary circuits are considered. Options for implementation in relay protection microprocessor terminals of advanced blocking algorithms in case of voltage circuits fault are proposed.

2021 ◽  
Vol 11 (24) ◽  
pp. 11608
Author(s):  
Alina Vinogradova ◽  
Alexander Vinogradov ◽  
Vadim Bolshev ◽  
Andrey Izmailov ◽  
Alexey Dorokhov ◽  
...  

Sectionalizing 0.4 kV power transmission lines (PTL) improves power supply reliability and reduces electricity undersupply through the prevention of energy disconnection of consumers in the event of a short circuit in the power line behind the sectionalizing unit (SU). This research examines the impact of sectionalizing on power supply reliability and reviews the literature on sectionalizing unit allocation strategies in electrical networks. This paper describes the experience of the use of sectionalizing units with listing strengths and weaknesses of adopted technical solutions and describes the new structure of sectionalizing units. A new methodology is proposed, whereby there are two criteria for allocating SU in 0.4 kV power transmission lines. The first criterion is the sensitivity limits against single-phase short circuits used for calculating the maximum distance at which SU can be installed. The second criterion is power supply reliability improvement, evaluating the cost-effectiveness of installing sectionalizing equipment by reducing power supply outage time. The established methodology was put to the test on an actual electrical system (Mezenka village, Orel area, Russia), which demonstrated that the installation of a sectionalizing unit paid off.


Dependability ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 47-52
Author(s):  
A. M. Koniukhov ◽  
A. V. Khlebnov ◽  
V. A. Timanov

The Aim of the paper is to show that improved power supply reliability and electric power system stability are achieved by applying new methods of testing relay protection and automation (RPaA). Major cascading failures in electric power systems are caused by cascading effects, i.e., effects involving several successive effects of various nature. Cascading effects allow extending the functionality while testing RP&A and taking into account the time factor in the context of effects of various nature. Method. A method is proposed for testing relay protection and automation taking into account the cascading effect that is used in the process of development, calibration and installation of protection devices for operation in predefined modes for the purpose of improved power supply reliability and unfailing stability of electric power systems. Result. Intermittent cascading effects do not allow the relay protection and automation recover the electric power system from the post-emergency mode, thus reducing the dynamic stability to the critical level. The diagram of relay protection and automation exposure allows taking into consideration the environmental effects in the process of testing the relay protection and automation. Conclusion. The proposed method of cascading exposure as part of testing relay protection and automation can be used in the process of development, calibration and installation of electric power systems protection and will enable improved stability of electric power systems and reliability of power supply.


2020 ◽  
Vol 67 (2) ◽  
pp. 44-50
Author(s):  
Vadim E. Bolshev ◽  
Aleksandr V. Vinogradov ◽  
Alina V. Vinogradova ◽  
Aleksey V. Bukreev ◽  
Aleksandr A. Lansberg

During the functioning of power supply system, there can be situations where the culprit in interruptions of power supply to consumers and a power quality violation is a power supply company or a consumer himself. Therefore, the economic incentive for power supply companies and consumers to increase power supply reliability and power quality is an urgent task. To implement such incentives, it is necessary to control the facts and time of power supply outages and their values as well as cases and time of non-compliance of power quality with the requirements of standards. It is possible with the use of a monitoring system for power supply reliability and power quality. (Research purpose) The research purpose is in developing a technical and economic method for stimulating power supply companies and consumers to increase efficiency of power supply system. (Materials and methods) The article provides a review of the structural diagram of a system for monitoring power supply reliability and power quality including devices for monitoring the number and duration of power outages and voltage deviations. (Results and discussion). An economic method has been developed to stimulate power supply companies and consumers to increase power supply system efficiency. The essence of the method is to control the parameters of power supply reliability and power quality, identify the violation of these parameters, determine the culprit of the violation, determine the time characteristics of the violation, summarize the duration of violations for the reporting period, compare the actual amount of duration with the allowable one, determine the amount of compensation for the violation and impose sanctions on payment compensation by the perpetrators of violations of these parameters. The article presents an algorithm for adjusting the cost of electricity supplied to consumers depending on the number and duration of voltage deviations and the number and duration of outages. The algorithm serves to ensure the operation of the specified technical and economic method. (Conclusions) The algorithm works in conjunction with a system for monitoring power supply reliability and power quality based on signals from devices that control the number and duration of outages and voltage deviations.


2021 ◽  
Vol 675 (1) ◽  
pp. 012121
Author(s):  
Pei Du ◽  
Yan Lin ◽  
Weijun Zhang ◽  
Zhixuan Liu ◽  
Fang Lin ◽  
...  

1997 ◽  
Vol 30 (17) ◽  
pp. 91-96
Author(s):  
F. Hoese ◽  
X. Lei ◽  
E. Lerch ◽  
H. Kuerten

Sign in / Sign up

Export Citation Format

Share Document