scholarly journals A method of testing relay protection and automation involving exposure to cascading effects for improved power supply reliability and electric power system stability

Dependability ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 47-52
Author(s):  
A. M. Koniukhov ◽  
A. V. Khlebnov ◽  
V. A. Timanov

The Aim of the paper is to show that improved power supply reliability and electric power system stability are achieved by applying new methods of testing relay protection and automation (RPaA). Major cascading failures in electric power systems are caused by cascading effects, i.e., effects involving several successive effects of various nature. Cascading effects allow extending the functionality while testing RP&A and taking into account the time factor in the context of effects of various nature. Method. A method is proposed for testing relay protection and automation taking into account the cascading effect that is used in the process of development, calibration and installation of protection devices for operation in predefined modes for the purpose of improved power supply reliability and unfailing stability of electric power systems. Result. Intermittent cascading effects do not allow the relay protection and automation recover the electric power system from the post-emergency mode, thus reducing the dynamic stability to the critical level. The diagram of relay protection and automation exposure allows taking into consideration the environmental effects in the process of testing the relay protection and automation. Conclusion. The proposed method of cascading exposure as part of testing relay protection and automation can be used in the process of development, calibration and installation of electric power systems protection and will enable improved stability of electric power systems and reliability of power supply.

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1920 ◽  
Author(s):  
Byoung-Soo Joo ◽  
Jung-Wook Woo ◽  
Jeong-Hun Lee ◽  
Injoo Jeong ◽  
Jungmin Ha ◽  
...  

Geomagnetic disturbances have the potential to impact the operation of electric power systems, and thus the assessment of their impacts is required as the first step for secure power system operations. While the effects of the disturbances have been observed primarily at higher latitudes, geomagnetic problems are also observed at mid and low latitude locations, in particular including neighboring countries to Korea such as China and Japan. This paper deals with the assessment of impact of geomagnetic disturbances on Korean electric power systems. For the assessment, the geoelectric fields induced by the geomagnetic disturbances are calculated using geomagnetic data measured over the past 20 years in order to quantify the strength of geomagnetic events in Korea. Then, the geomagnetic currents on the grid driven by the geoelectric fields are computed. Finally, the increased reactive power absorption in high voltage transformers is analyzed and accordingly the change of system voltage magnitudes is identified to evaluate whether the system maintains the voltage stability. The systematic study concludes that during a strong geomagnetic disturbance, the Korean electric power system satisfies the associated standards in the U.S. and maintains system stability.


Author(s):  
С.Е. Кузнецов ◽  
Н.А. Алексеев ◽  
А.А. Виноградов

Изложена методика расчета показателей безотказности электроснабжения (вероятности безотказного электроснабжения и средней наработки до отказа) ответственных приемников морского судна, подключаемых к аварийному электрораспределительному щиту. Методика реализована применительно к судовой электроэнергетической системе с тремя источниками электроэнергии – двумя основными дизель-генераторными агрегатами, подключенными к главному электрораспределительному щиту, и одним аварийным дизель-генераторным агрегатом, подключенным к аварийному электрораспределительному щиту. Рассмотрены различные режимы работы судовой электроэнергетической системы: при работе до первого отказа одного основного дизель-генератора, при параллельной работе двух основных дизель-генераторов, при работе одного аварийного дизель-генератора; а также после обесточивания с учетом возможности последующего включения резервного или (и) аварийного дизель генератора. Методика, с соответствующими корректировками, может быть использована для расчета показателей безотказного электроснабжения в судовых электроэнергетических системах другой комплектации. Расчет показателей безотказности электроснабжения необходим при проектировании для обеспечения требуемого уровня надежности электроснабжения судовых приемников электроэнергии, а при эксплуатации – для предупреждения отказов и планирования технического обслуживания и ремонта элементов судовых электроэнергетических систем. The methodology for calculating the indicators of the reliability of power supply (the probability of failure-free power supply and the mean time to failure) of critical receivers of a sea vessel connected to the emergency electrical switchboard is presented. The technique is implemented in relation to a ship power system with three sources of electricity - two main diesel generator sets connected to the main electrical switchboard, and one emergency diesel generator set connected to an emergency electrical switchboard. Various operating modes of the ship's electric power system are considered: during operation until the first failure of one main diesel generator, during parallel operation of two main diesel generators, during operation of one emergency diesel generator; as well as after de-energizing, taking into account the possibility of subsequent switching on of the backup and / or emergency diesel generator. The technique, with appropriate adjustments, can be used to calculate indicators of reliable power supply in ship power systems of a different configuration. Calculation of power supply reliability indicators is necessary during design to ensure the required level of power supply reliability for ship power receivers, and during operation - to prevent failures and plan maintenance and repair of elements of ship power systems.


2021 ◽  
Author(s):  
Sergey Goremykin

The textbook describes the main issues of the theory of relay protection and automation of electric power systems. The structure and functional purpose of protection devices and automation of power transmission lines of various configurations, synchronous generators, power transformers, electric motors and individual electrical installations are considered. For each of the types of protection of the above objects, the structure, the principle of operation, the order of selection of settings are given, the advantages and disadvantages are evaluated, indicating the scope of application. The manual includes material on complete devices based on semiconductor and microprocessor element bases. The progressive use of such devices (protection of the third and fourth generations) is appropriate and effective due to their significant advantages. Meets the requirements of the federal state educational standards of higher education of the latest generation. It is intended for students in the areas of training 13.03.02 "Electric power and electrical engineering" (profile "Power supply", discipline "Relay protection and automation of electric power systems") and 35.03.06 "Agroengineering" (profile "Power supply and electrical equipment of agricultural enterprises", discipline "Relay protection of electrical equipment of agricultural objects"), as well as for graduate students and specialists engaged in the field of electrification and automation of industrial and agrotechnical objects.


2019 ◽  
Vol 24 ◽  
pp. 02012
Author(s):  
Yury Shornikov ◽  
Evgeny Popov

Transients in electric power systems are of great interest to power engineers when designing a new or maintaining an existing system. The paper deals with using hybrid system theory for modeling and simulation of an electric power system with controllers. The presented technique is rather convenient and recommended as mathematical models of transients in electric power systems with controllers in general contain both continuous and discrete components. The modeling and simulation were carried out in the modeling and simulation environment ISMA, which is briefly presented in the paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Agustín Flores ◽  
Eduardo Quiles ◽  
Emilio García ◽  
Francisco Morant ◽  
Antonio Correcher

This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.


2021 ◽  
Vol 286 ◽  
pp. 02009
Author(s):  
Ivaylo Nedelchev ◽  
Hristo Zhivomirov ◽  
Yoncho Kamenov

The renewable energy take part in the most of the electric power systems in the modern world. The part of this type of energy in the global electric power system, as well as in the local scale, increases with the setting the stricter requirements for decreasing the level of the carbon dioxide emissions. This is the result of the newest international conventions and decision for saving the nature. By these conditions, the electric power systems are forced to work with more different types of energy sources: wind power, photovoltaic, biomass plants etc. Switching of such miscellaneous power sources, leads to complicated transient processes, which are developed due to specific electrical parameters, especially harmonic components, of the synchronous generators, photovoltaic and wind power plants. This paper represents data from measurements of the transient processes into the physical model of the electric power system with predominant part of renewable energy and assesses the applicability of the model. For conducting this study, the multichannel DAQ measurement system is used.


2019 ◽  
Vol 10 (1) ◽  
pp. 35-41
Author(s):  
Dwi Ajiatmo ◽  
Imam Robandi ◽  
Machrus Ali ◽  
Betta Aidya Suroya

Short circuit is one type of interference that often occurs in electric power systems. The interference if it lasts a long time will affect the quality and continity of electrical power distribution as well as the reliability and safety of the equipment on the system. To minimize the possibility of interference and to minimize the consequences caused by interference, an analysis of disturbances in the electric power system is needed. This study discusses the classification and analysis of disturbances in the electric power system. The type of interference in the electric power system is classified into two, namely symmetry and non-symmetrical interference. Symmetry disturbances are three phase disturbances which are described by the equation of the sequence of the symmetry component system. Sequence equations from the symmetry component system are positive sequence equations, negative sequence equations, and zero sequence equations. Non-symmetrical interference is a disorder that often occurs in electric power systems, namely the interference of one network to the ground, network interference to the network and interference of two networks to the ground. This research is to classify and to analyze the types of disturbances in the Java-Bali electric power system 500 kV 20 buses in the form of a single line diagram, using Power World Simulator and ETAP Software applications. The simulation results are calculated and display the simulation design of the power system with the tools contained in the program.


2019 ◽  
Vol 139 ◽  
pp. 01009
Author(s):  
Murodilla Mukhammadiev ◽  
Boborakhim Urishev ◽  
Shirin Esemuratova ◽  
Nigina Djumaniyozova

This article deals with the analysis and development perspectives of the use pumped storage power plants use to increase the reliability and regime controllability of electric power systems of the Republic of Uzbekistan.


Fault analysis is an important aspect in the successful operation of a power utility grid. The occurrence of faults in the system is not avoidable as causes of faults are not particularly one but of many with different causes and nature. It is one of the most important as well as it one of the most complex tasks in power engineering. The studies and discovery of faults in electric power systems is essential in ensuring the consistency and the stability if the power grid. Another importance of carrying out fault analysis gives a fair idea of the voltages and the current magnitudes under faulty conditions for different scenarios. This is helpful in the design of protection devices such as fuses, circuit breaker ratings, over current protection relays and other devices that are used for the protection of the system. Protection devices are important features of the power system grid mainly because their role in saving equipment and also human lives. In this paper, we investigate and analyze the behavior of electric power systems under fault conditions and then evaluate various practical scenarios.


Sign in / Sign up

Export Citation Format

Share Document