scholarly journals Development of electric power network infrastructure in aspect of electric energy supply security – case study Poland

2019 ◽  
Vol 84 ◽  
pp. 02002
Author(s):  
Waldemar Dolega

In this paper, an analysis of issues related to development of national electric power network infrastructure in aspect of electric energy security is performed. Profile of network infrastructure in area of transmission and distribution is performed. Threats for electric energy supply security connected with transmission and distribution infrastructure are discussed. Both transmission and distribution electric power network are adapted for presently occurred typical conditions of electric energy demand and realization of internal tasks in normal conditions, but can create potential threat for electric energy supply security. In the context of forecasted increase of electric energy demand, inadequate power in National Electric Power System (NEPS) in domestic sources and available through intersystem connections, uneven location of sources and consumers at shortage of proper network transmission capacities, necessity of improvement of quality and electric energy supply reliability to final consumers and intensive development of renewable energy sources, present network infrastructure in area of transmission and distribution will be insufficient. Development of 400 and 220 kV transmission network, 110 kV distribution network especially in area of cities, MV distribution network especially in rural areas and realization of investments for improvement of export-import possibilities of NEPS will be necessary. Challenges for transmission and distribution system operators in area of network development are performed. They concern mainly investment sphere and area connected with preparation and construction of network investments.

Author(s):  
Md. Joniur Rahaman

The term "smart grid" refers to the transformation of the traditional electric power grid into a modern grid. Modernization of the present electric power system is an important step to implement the Smart Grid technology. The structure of the existing power sector in Bangladesh is almost a hundred years old. Due to which the power sector of Bangladesh facing huge power wastage. A Smart Grid also ensures the efficient transmission and distribution of electric power. This paper gives a brief description of Smart Grid, the latest trends, challenges, prospects, cost analysis of smart grid equipment, and its facility. The spotlight of this paper is to implement the Smart Grid's perspective to Bangladesh. That’s included to have new distributed generation technology, smart meter, a pilot project, etc. Also, the main objective of this paper is the comprehensive development of transmission and distribution loss reduction, which will be saving a big amount of capital every year. And that will play a huge role in the economy of Bangladesh to move forward in global progress.


Author(s):  
S. E. Okosun ◽  
J. O. Fasakin ◽  
J. O. Basorun ◽  
I. O. Olamiju ◽  
E. A. Aluko

Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 418 ◽  
Author(s):  
Gangjun Gong ◽  
Zhening Zhang ◽  
Xinyu Zhang ◽  
Nawaraj Kumar Mahato ◽  
Lin Liu ◽  
...  

With the integration of highly permeable renewable energy to the grid at different levels (transmission, distribution and grid-connected), the volatility on both sides (source side and load side) leading to bidirectional power flow in the power grid complicates the control mechanism. In order to ensure the real-time power balance, energy exchange, higher energy utilization efficiency and stability maintenance in the electric power system, this paper proposes an integrated application of blockchain technology on energy routers at transmission and distribution networks with increased renewable energy penetration. This paper focuses on the safe and stable operation of a highly penetrated renewable energy grid-connected power system and its operation. It also demonstrates a blockchain-based negotiation model with weakly centralized scenarios for “source-network-load” collaborative scheduling operations; secondly, the QoS (quality of service) index of energy flow control and energy router node doubly-fed stability control model were designed. Further, it also introduces the MOPSO (multi-objective particle swarm optimization) algorithm for power output optimization of multienergy power generation; Thirdly, based on the blockchain underlying architecture and load prediction value constraints, this paper puts forward the optimization mechanism and control flow of autonomous energy coordination of b2u (bottom-up) between router nodes of transmission and distribution network based on blockchain.


2013 ◽  
Vol 811 ◽  
pp. 631-634
Author(s):  
Xue Song Zhou ◽  
Zhao Hao Hou ◽  
You Jie Ma

This paper proposes a general overview of distribution network automation technology. With the continuous development of society and economy, the distribution network automation has become the trend and developing direction of electric power system. As the end part of the electric power system, the distribution network is directly connected to the consumers and plays a vital role in improving the quality and reliability of power supply. In order to provide reference for improving the reliability of distribution network and to speed up the development of distribution network automation, this paper analyses the system structure, development status and trend of distribution network automation technology.


2012 ◽  
Vol 614-615 ◽  
pp. 751-760
Author(s):  
Guo You Wang ◽  
Xi Lin Zhang ◽  
Yu Shi ◽  
Yang Liu ◽  
Cheng Min Wang ◽  
...  

The electric power system is a specific example among various networks in nature and human society, in which the network flow models and arithmetic can be applied. The node-voltage-based and branch-current-based hybrid electric power network equations are established in this paper, and the reactive power optimization problem is modeled based on the established network equations. It is respectively solved while the reactive power optimization problem is decomposed as two sub-problems, among which a sub-problem is described by quadric minimum cost flow model and another one is expressed by a linear equations. Thereby, the complexity and dimensions of reactive power optimization problem are distinctly reduced due to the two decomposed sub-problems are easy to solve. It is proved that found optimal solution is closed to global by the computational efficiency analysis. The case study is made at IEEE-30 system and it is indicated that proposed approach could improve the computational efficiency of reactive power optimization problem by comparing with traditional optimal power flow arithmetic.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Agustín Flores ◽  
Eduardo Quiles ◽  
Emilio García ◽  
Francisco Morant ◽  
Antonio Correcher

This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.


Sign in / Sign up

Export Citation Format

Share Document