scholarly journals Effect of water infiltration on the mechanical behaviour of unsaturated soil

2019 ◽  
Vol 92 ◽  
pp. 07002
Author(s):  
Ali Murtaza Rasool ◽  
Jiro Kuwano

Natural slopes and embankments are generally unsaturated in nature with negative pore water pressure adding to the shear strength and hence the stability of the slopes. During the event of rainfall, pore water pressure becomes less negative or even positive as a result the shear strength of soil decreases and failure occur. Therefore, the strength and deformation characteristics for unsaturated soil become important when analysing the stability of these types of slopes. In this study, a triaxial test apparatus was used to study the effect of water infiltration on the mechanical behaviour of unsaturated soil. The test results show that water infiltration decreased with increase in net confining stress and the stress paths were independent of the matric suction, the net confining stress and the shearing conditions for the present experimental study.

2017 ◽  
Vol 79 (7-2) ◽  
Author(s):  
Heriansyah Putra ◽  
Ahmad Rifa`i ◽  
Joko Sujono ◽  
Alfira Silarukmi

The pore water pressure is the essential factor and plays a key role in the unsaturated soil parameters. Experimental works and numerical analysis were conducted to determine the critical condition of the slope stability due to the evolution of shear strength parameters. The effect of infiltration on the pore water pressure was evaluated. The filter paper method was conducted to obtain the matric suction in various degrees of saturation. The mechanical properties of the undisturbed samples were examined through triaxial and permeability test, respectively. WRPLOT ViewTM was adopted to assess the intensity and duration of the actual rainfall. The applicability of the psycho-empirical method in SOILVISION Database to fit Soil Water Characteristic Curve (SWCC) was studied. GEO-SLOPE was used to assess the evolution of the pore water pressure and its effect on the safety factor of the slope. The evolution of pore water pressure induced the infiltration influenced the shear strength parameters and reduced the safety factor. The reduction 20% of cohesion was obtained and hence, the safety factor decrease to 1.0. The infiltration at the beginning of the wet season is the most critical condition that increases the soil moisture significantly.


1981 ◽  
Vol 27 (97) ◽  
pp. 503-505 ◽  
Author(s):  
Ian J. Smalley

AbstractRecent investigations have shown that various factors may affect the shear strength of glacial till and that these factors may be involved in the drumlin-forming process. The presence of frozen till in the deforming zone, variation in pore-water pressure in the till, and the occurrence of random patches of dense stony-till texture have been considered. The occurrence of dense stony till may relate to the dilatancy hypothesis and can be considered a likely drumlin-forming factor within the region of critical stress levels. The up-glacier stress level now appears to be the more important, and to provide a sharper division between drumlin-forming and non-drumlin-forming conditions.


2022 ◽  
Author(s):  
Sahila Beegum ◽  
P J Jainet ◽  
Dawn Emil ◽  
K P Sudheer ◽  
Saurav Das

Abstract Soil pore water pressure analysis is crucial for understanding landslide initiation and prediction. However, field-scale transient pore water pressure measurements are complex. This study investigates the integrated application of simulation models (HYDRUS-2D/3D and GeoStudio–Slope/W) to analyze pore water pressure-induced landslides. The proposed methodology is illustrated and validated using a case study (landslide in India, 2018). Model simulated pore water pressure was correlated with the stability of hillslope, and simulation results were found to be co-aligned with the actual landslide that occurred in 2018. Simulations were carried out for natural and modified hill slope geometry in the study area. The volume of water in the hill slope, temporal and spatial evolution of pore water pressure, and factor of safety were analysed. Results indicated higher stability in natural hillslope (factor of safety of 1.243) compared to modified hill slope (factor of safety of 0.946) despite a higher pore water pressure in the natural hillslope. The study demonstrates the integrated applicability of the physics-based models in analyzing the stability of hill slopes under varying pore water pressure and hill slope geometry and its accuracy in predicting future landslides.


2011 ◽  
Vol 255-260 ◽  
pp. 3488-3492
Author(s):  
Bao Lin Xiong ◽  
Jing Song Tang ◽  
Chun Jiao Lu

Rainfall is one of the main factors that influence the stability of slope. Rainfall infiltration will cause soil saturation changing and further influence pore water pressure and medium permeability coefficient. Based on porous media saturation-unsaturated flow theory, the slope transient seepage field is simulated under the conditions of rainfall infiltration. It is shown that change of pore water pressure in slope soil lag behind relative changes in rainfall conditions. As the rainfall infiltrate, unsaturated zone in top half of slope become diminution, the soil suction and shear strength reduce, so stabilization of soil slope is reduced.


2012 ◽  
Vol 7 (3) ◽  
pp. 1049-1057 ◽  
Author(s):  
M. Bayat ◽  
E. Bayat ◽  
H. Aminpour ◽  
A. Salarpour

1981 ◽  
Vol 27 (97) ◽  
pp. 503-505 ◽  
Author(s):  
Ian J. Smalley

AbstractRecent investigations have shown that various factors may affect the shear strength of glacial till and that these factors may be involved in the drumlin-forming process. The presence of frozen till in the deforming zone, variation in pore-water pressure in the till, and the occurrence of random patches of dense stony-till texture have been considered. The occurrence of dense stony till may relate to the dilatancy hypothesis and can be considered a likely drumlin-forming factor within the region of critical stress levels. The up-glacier stress level now appears to be the more important, and to provide a sharper division between drumlin-forming and non-drumlin-forming conditions.


2007 ◽  
Vol 49 (1) ◽  
pp. 3-15
Author(s):  
Yasuo YANAKA ◽  
Akira TAKAHASHI ◽  
Yoshinobu HOS H INO ◽  
Tomokazu SUZUKI ◽  
Makoto NISHIGAKI ◽  
...  

1993 ◽  
Vol 30 (3) ◽  
pp. 491-505 ◽  
Author(s):  
Delwyn G. Fredlund ◽  
Zai Ming Zhang ◽  
Karen Macdonald

The stability of potash tailings piles is investigated using a pore-water pressure generation and dissipation model together with a limit equilibrium analysis. It is found that a shallow toe failure mode is generally the most applicable and that the stability may be influenced by pore-water pressure migration below the pile. It is suggested that field studies would be useful in evaluating stability in the toe region of the pile. Key words : potash tailings, slope stability, pore pressure dissipation, solutioning.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5825-5830 ◽  
Author(s):  
ZHENGHUA XIAO ◽  
BO HAN ◽  
HONGJIAN LIAO ◽  
AKENJIANG TUOHUTI

A series of dynamic triaxial tests are performed on normal anisotropic consolidation and over anisotropic consolidation specimens of loess. Based on the test results, the variable regularity of dynamic shear stress, axial strain and pore water pressure of loess under dynamic loading are measured and analyzed. The influences of the dynamic shear strength and pore water pressure at different over consolidation ratio are analyzed. The relationship between dynamic shear strength and over consolidation ratio of loess is obtained. The evaluating standard of dynamic shear strength of loess is discussed. Meanwhile, how to determine the effective dynamic shear strength index of normal anisotropic consolidated loess is also discussed in this paper. Several obtained conclusions can be referenced for studying the dynamic shear strength of loess foundation.


Sign in / Sign up

Export Citation Format

Share Document