scholarly journals Sorption of 137Cs, 90Sr, Se, 99Tc, 152(154)Eu, 239(240)Pu on fractured rocks of the Yeniseysky site (Nizhne-Kansky massif, Russia)

2019 ◽  
Vol 98 ◽  
pp. 10007
Author(s):  
Konstantin Rozov ◽  
Vyacheslav Rumynin ◽  
Anton Nikulenkov ◽  
Polina Leskova

The study demonstrates the effect of sorption properties of fractured host rocks from the Yeniseysky site (Nizhne-Kansky rock massif, Krasnoyarsk region) on the migration of dissolved radioactive components (137Cs, 90Sr, 79Se, 99Tc, 152(154)Eu, 239(240)Pu) in the deep geological conditions of a high-level radioactive waste repository. Estimates of radionuclide distribution coefficients between the aqueous solution and fractured rocks obtained from sorption experiments. The influence of various petrographic types and fracture-filling substances on the retardation of radioactive components has been investigated. Based on the results of sorption experiments, we concluded that the type and attributes of rock discontinuities, as well as the mineral composition of the material in fractures, are crucial for the immobilization of radionuclides during their migration through a geological environment.

2021 ◽  
Vol 1 ◽  
pp. 45-46
Author(s):  
Sönke Reiche ◽  
Reinhard Fink ◽  
Nils-Peter Nilius

Abstract. After implementation of the Repository Site Selection Act (StandAG) in 2017, the Federal Company for Radioactive Waste Disposal (BGE), as the German waste management organization, started the site selection procedure for a nuclear repository for high-level radioactive waste in Germany. On the way towards the repository site with the best possible safety, the site selection procedure is required to be a participatory, transparent, learning and self-questioning process based on scientific expertise. With the Subareas Interim Report published in 2020, first results were presented outlining subareas with favourable geological conditions in preparation for defining the siting regions for surface exploration. Currently, one of the main tasks in the site selection procedure is to establish a detailed geoscientific synthesis (Geosynthesis) for each subarea. The Geosynthesis contains all geological information for the characterization of each subarea and hence serves as the foundation for the subsequent analysis within the representative preliminary safety assessments (rvSU) and the geoscientific consideration criteria. Based on this information, all areas within the subareas will be evaluated to find the siting regions for surface exploration. The Geosynthesis includes a description of the regional geology focusing on the host rock, the overburden and relevant geological processes that may affect the potential nuclear waste repository in the next 1 million years. The data for the Geosynthesis are mostly compiled from state authorities and include 3-D geologic models, regional maps and cross-sections, bore hole data (e.g. geophysical logs) and seismic data. Furthermore, it is necessary to digitize, process, interpret and evaluate the aforementioned data using the available knowledge from the scientific literature in the context of the site selection procedure.


1995 ◽  
Vol 412 ◽  
Author(s):  
C. Oda ◽  
H. Yoshikawa ◽  
M. Yui

AbstractPalladium solubility was measured in a dilute aqueous solution at room temperature in the pH range from 3 to 13 under anaerobic conditions. Crystalline Pd metal was clearly visible and the concentration of palladium in solution decreased gradually with aging time. The palladium concentrations in solution were less than 9.4×10-10M in the pH range from 4 to 10 and increased to 10-7M in the pH range greater than 10. This study suggests that palladium concentrations in certain high-level waste repository environments may be limited by Pd metal and may be less than 10-9M.


2021 ◽  
Author(s):  
Marc Wengler ◽  
Astrid Göbel ◽  
Eva-Maria Hoyer ◽  
Axel Liebscher ◽  
Sönke Reiche ◽  
...  

<p>According to the 'Act on the Organizational Restructuring in the Field of Radioactive Waste Disposal' the BGE was established in 2016. The amended 'Repository Site Selection Act' (StandAG) came into force in July 2017 and forms the base for the site selection by clearly defining the procedure. According to the StandAG the BGE implements the participative, science-based, transparent, self-questioning and learning procedure with the overarching aim to identify the site for a high-level radioactive waste (HLW) repository in a deep geological formation with best possible safety conditions for a period of one million years.</p><p>The German site selection procedure consists of three phases, of which Phase 1 is divided into two steps. Starting with a blanc map of Germany, the BGE completed Step 1 in September 2020 and identified 90 individual sub-areas that provide favorable geological conditions for the safe disposal of HLW in the legally considered host rocks; rock salt, clay and crystalline rock. Based on the results of Step 1, the on-going Step 2 will narrow down these sub-areas to siting regions for surface exploration within Phase 2 (§ 14 StandAG). Central to the siting process are representative (Phase 1), evolved (Phase 2) and comprehensive (Phase 3) preliminary safety assessments according to § 27 StandAG.</p><p>The ordinances on 'Safety Requirements' and 'Preliminary Safety Assessments' for the disposal of high-level radioactive waste from October 2020 regulate the implementation of the preliminary safety assessments within the different phases of the siting process. Section 2 of the 'Safety Requirements' ordinance provides requirements to evaluate the long-term safety of the repository system; amongst others, it states that all potential effects that may affect the long-term safety of the repository system need to be systematically identified, described and evaluated as “expected” or “divergent” evolutions. Additionally, the ordinance on 'Preliminary Safety Assessments' states in § 7, amongst others, that the geoscientific long-term prediction is a tool to identify and to evaluate geogenic processes and to infer “expected” and “divergent” evolutions from those. Hence, considering the time period of one million years for the safe disposal of the HLW and the legal requirements, it is essential to include long-term climate evolution in the German site selection process to evaluate the impact of various climate-related scenarios on the safety of the whole repository system.</p><p>To better understand and evaluate the influence of climate-related processes on the long-term safety of a HLW repository, climate-related research will be a part of the BGE research agenda. Potential research needs may address i) processes occurring on glacial – interglacial timescales (e.g. the inception of the next glaciation, formation and depth of permafrost, glacial troughs, sub-glacial channels, sea-level rise, orbital forcing) and their future evolutions, ii) effects on the host rocks and the barrier system(s) as well as iii) the uncertainties related to these effects but also to general climate models and predictions.</p>


Sign in / Sign up

Export Citation Format

Share Document