scholarly journals Modeling and thermal calculation of a pipeline insulation system

2020 ◽  
Vol 164 ◽  
pp. 14021
Author(s):  
Vladislav Krashchenko ◽  
Nikita Tretyakov ◽  
Alexander Chernov ◽  
Ilmir Shaykhalov ◽  
Alexey Zhukov

Energy efficiency of heating networks depends on the costs of the manufacture of insulation materials and components, its installation and exploitation of insulating jacket. As insulation materials for insulation of heating networks, products based on rock wool, polyurethane foam extruded polystyrene foam, foam rubber and polyethylene foam. In this contribution introduced basic principles of calculating the thickness of the thermal insulation of a pipeline by the value of the standard density of the heat flow are given using an example of the use of products based on polyethylene foam. Calculation of the heat flux from the surface of the heat-insulating structure is carried out at a given thickness of the heat-insulating layer if there is a need to determine heat loss (or cold loss). The basis for the calculation is a mathematical model of heat transfer, a developed calculation algorithm and a computer program. The method of installation of thermal insulation depends on the diameter of the pipeline and the selected type of product. Insulating cylinders or cylinders in combination with heat-insulating mats are used for pipelines of small diameters. Roll materials are used to isolate large diameters. Products are fixed on pipelines using mechanical fasteners.

2014 ◽  
Vol 638-640 ◽  
pp. 1646-1649 ◽  
Author(s):  
Yan Qiu Cui ◽  
Yun Long Peng ◽  
Cai Ling Luo

EPS, XPS and PU plates etc. are often selected as the insulating layer in external thermal insulation system. Although featured by good thermal insulation properties and low costs, these materials are provided with major fire potential. Therefore, fireproof treatment methods for the thermal insulation materials and fireproof structural measure for the system are proposed in this paper based on the combustion tests on the thermal insulation materials, so as to increase the fire protection safety of the external thermal insulation system.


2011 ◽  
Vol 335-336 ◽  
pp. 1412-1417 ◽  
Author(s):  
Jiri Zach ◽  
Jitka Peterková ◽  
Vít Petranek ◽  
Jana Kosíková ◽  
Azra Korjenic

Production of building materials is mostly energy consuming. In the sphere of insulation materials we mostly see rock wool based materials or foam-plastic materials whose production process is demanding from material aspect and raw materials aspect as well. At present the demand for thermal insulation materials has been growing globally. The thermal insulation materials form integral part of all constructions in civil engineering. The materials mainly fulfill the thermal insulating functions and also the sound-insulating one. The majority of thermal insulation materials are able to fulfill both of the functions simultaneously. The paper describes questions of thermal insulation materials development with good sound properties based on natural fibres that represent a quickly renewable source of raw materials coming from agriculture. The main advantage of the materials are mainly the local availability and simple renewability of the raw materials. In addition an easy recycling of the materials after their service life end in the building construction and last but not least also the connection of human friendly properties of organic materials with advanced product manufacture qualities of modern insulation materials.


2019 ◽  
Vol 10 (2) ◽  
pp. 78-91
Author(s):  
A. V Bolotin ◽  
S. M Sergeev ◽  
A. A Lunegova ◽  
E. A Kochetkova

Modern technologies are not standing still, and scientists are trying not only to invent new building materials, but also to find non-standard use of various raw materials that were previously considered unsuitable for use. Innovative technologies are actively used for modern construction of buildings, in particular, some types of new materials are used in the construction of various facilities. This is especially true in areas where it is not possible to import or use ordinary building materials for various reasons. Often, when designing a building, developers are wondering whether it is worth making the house warm during construction, and which insulation for the walls of the house is better to choose. This article addresses the question of which insulation for walls is most suitable for construction. The most common are mineral insulation, which are represented on the market today in the form of basalt slabs, fiberglass, etc. They have such advantages as low thermal conductivity, good thermal insulation and vapor permeability. The article presents a table with comparative performance characteristics of a mineral wool stone slab and a fiberglass slab. Stone or basalt wool has several advantages. It is able to withstand significant temperatures and temperature changes, the mats are easy to transport, convenient to install. In our opinion, a serious alternative to basalt in the production of thermal insulation materials is volcanic ash. One of the main features of volcanic ash are its building qualities, such as good thermal insulation and an environmentally friendly composition. Since here we are considering the possibility of producing insulation materials based on volcanic ash, we performed a thermal calculation of the enclosing structures. Also in the tables are the costs of transportation of volcanic ash from the field to the point of the proposed production of insulating material. Volcanic ash can be widely used in countries with high volcanic activity as an inexpensive raw material for the manufacture of building materials. It does not require additional processing and has a number of useful properties.


2012 ◽  
Vol 174-177 ◽  
pp. 1589-1592
Author(s):  
Ming Gang Xu ◽  
Xu Wang ◽  
Zhuo Wei Ding

The outer-wall thermal insulation system has been wide used in civil engineering as an effective energy-saving measure. At present, the organic flammable thermal insulation materials such as EPS and XPS are used in outer-wall thermal insulation system in China, which leads to great fire damage probably. The rock-wool is described in detail on its merits such as good thermal insulation performance, good sound insulation performance, light weight, low thermal conductivity coefficient, incombustibility, innocuity and stable chemical capability. Two popular outer-wall external thermal insulation systems are introduced. The construction sequence of the outer-wall external thermal insulation system with rock-wool slabs, mortar and thin layer plastering technology is described.


2014 ◽  
Vol 787 ◽  
pp. 106-110 ◽  
Author(s):  
Zhu Li ◽  
Xian Zheng Gong ◽  
Zhi Hong Wang ◽  
Yu Liu ◽  
Li Ping Ma ◽  
...  

Although outer wall thermal insulation technology is an effective measure for building energy-saving, the production of thermal insulation materials causes serious impacts on environment. In the present investigation the resource, energy consumption and environmental emission of the two kinds of thermal insulation materials were analyzed, from the acquisition of raw materials to production process based on Life Cycle Assessment (LCA). The result show that life cycle energy consumption of rock wool board is 415MJ per functional unit, proximately twice of EPS board’s (220MJ). Overall, environmental impact indicators caused by rock wool board is more serious than EPS.


2014 ◽  
Vol 787 ◽  
pp. 176-183 ◽  
Author(s):  
Li Ping Ma ◽  
Quan Jiang ◽  
Ping Zhao ◽  
Chun Zhi Zhao

Studies on life cycle assessment of three typical building thermal insulation materials including polystyrene board, rock wool board, and rigid foam polyurethane board related to building energy-saving were carried out. Based on the method of life cycle assessment, "1 kg of thermal insulation material" is first selected as one of the functional units in this study based on the production field data statistics and general market transaction rules of the thermal insulation materials, and life cycle resource consumption, energy consumption and exhaust emission of the three products in China are deeply surveyed and analyzed. The abiotic depletion potential (ADP), primary energy demand (PED), and global warming potential (GWP) for production of 1 kg of the three thermal insulation materials are calculated and analyzed. Furthermore, the functional unit is extended to be "1 m2 of thermal insulation material meeting the same energy-saving requirements" so as to compare the difference of environmental friendliness among the three building thermal insulation materials, and the corresponding life cycle environmental impact is also calculated and analyzed. As shown by the results, where calculated in unit mass, the order of production life cycle environmental impact significances of the thermal insulation materials is as follows: rock wool board < polyurethane board < polystyrene board. However, where calculated in unit area (m2) meeting the 65% energy-saving requirements, the production life cycle environmental impact significances of the three kinds of insulation materials are sorted as polystyrene board < polyurethane board < rock wool board, whatever the region is, which is opposite with that of the results for the insulation materials in unit mass (kg). The reason for such difference is that they have different volume weights and heat conductivity coefficients. The polystyrene board has a smaller volume weight and the smallest heat conductivity coefficient, whereas the rock wool board has the highest volume weight and heat conductivity coefficient. Source of the project fund. Subject "the Research and Application of Life Cycle Assessment Technology to the Building Materials for Building Engineering in Typical Regions" of the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (No.: 2011BAJ04B06)


2014 ◽  
Vol 908 ◽  
pp. 8-13
Author(s):  
Ke Wei Ding ◽  
Chen Cheng ◽  
Ying Qi Hao ◽  
Shan Xia

The thermal performance of a new rock wool color steel sandwich board is calculated and the results are analyzed comparatively with those of other thermal insulation materials in this paper. The result proves this type of rock wool color steel sandwich board to be worth promoting because of its well thermal performance, and of its satisfaction with requirements of relevant thermal specifications.


Sign in / Sign up

Export Citation Format

Share Document