scholarly journals Heat and humidity performance of EPS and Rock wool board external thermal insulation system

Author(s):  
Z H Yang ◽  
P L Guo ◽  
X Chen ◽  
W Jiang
2012 ◽  
Vol 174-177 ◽  
pp. 1589-1592
Author(s):  
Ming Gang Xu ◽  
Xu Wang ◽  
Zhuo Wei Ding

The outer-wall thermal insulation system has been wide used in civil engineering as an effective energy-saving measure. At present, the organic flammable thermal insulation materials such as EPS and XPS are used in outer-wall thermal insulation system in China, which leads to great fire damage probably. The rock-wool is described in detail on its merits such as good thermal insulation performance, good sound insulation performance, light weight, low thermal conductivity coefficient, incombustibility, innocuity and stable chemical capability. Two popular outer-wall external thermal insulation systems are introduced. The construction sequence of the outer-wall external thermal insulation system with rock-wool slabs, mortar and thin layer plastering technology is described.


2020 ◽  
Vol 164 ◽  
pp. 14021
Author(s):  
Vladislav Krashchenko ◽  
Nikita Tretyakov ◽  
Alexander Chernov ◽  
Ilmir Shaykhalov ◽  
Alexey Zhukov

Energy efficiency of heating networks depends on the costs of the manufacture of insulation materials and components, its installation and exploitation of insulating jacket. As insulation materials for insulation of heating networks, products based on rock wool, polyurethane foam extruded polystyrene foam, foam rubber and polyethylene foam. In this contribution introduced basic principles of calculating the thickness of the thermal insulation of a pipeline by the value of the standard density of the heat flow are given using an example of the use of products based on polyethylene foam. Calculation of the heat flux from the surface of the heat-insulating structure is carried out at a given thickness of the heat-insulating layer if there is a need to determine heat loss (or cold loss). The basis for the calculation is a mathematical model of heat transfer, a developed calculation algorithm and a computer program. The method of installation of thermal insulation depends on the diameter of the pipeline and the selected type of product. Insulating cylinders or cylinders in combination with heat-insulating mats are used for pipelines of small diameters. Roll materials are used to isolate large diameters. Products are fixed on pipelines using mechanical fasteners.


2013 ◽  
Vol 753-755 ◽  
pp. 512-515 ◽  
Author(s):  
Jiao Long Guo ◽  
Qiang Du ◽  
Lu Lu

The paper takes into full account of the convenience and safety of outer-wall external thermal insulation system, and investigates the technical parameters of rock-wool. The study provides two kinds of construction methods for the system which are rendering and anchoring . In general, galvanizing steel-meshwork using machine anchors could use all kinds of rock-wool panel made in China. The interface mortar used for rock-wool could protect workers hands and improve the integrity and anti-crackness of the system. Both of these two kinds of rock-wool systems could resolve the difficulties of current rock-wool panel application in outer-wall external thermal insulation system. The rock-wool external thermal insulation which has surfficient fire-proof capability could apply in many kinds of buildings, especially high-rise buildings.


2021 ◽  
Vol 13 (5) ◽  
pp. 2491
Author(s):  
Alena Tažiková ◽  
Zuzana Struková ◽  
Mária Kozlovská

This study deals with small investors’ demands on thermal insulation systems when choosing the most suitable solution for a family house. By 2050, seventy percent of current buildings, including residential buildings, are still expected to be in operation. To reach carbon neutrality, it is necessary to reduce operational energy consumption and thus reduce the related cost of building operations and the cost of the life cycle of buildings. One solution is to adapt envelopes of buildings by proper insulation solutions. To choose an optimal thermal insulation system that will reduce energy consumption of building, it is necessary to consider the environmental cost of insulation materials in addition to the construction cost of the materials. The environmental cost of a material depends on the carbon footprint from the initial origin of the material. This study presents the results of a multi-criteria decision-making analysis, where five different contractors set the evaluation criteria for selection of the optimal thermal insulation system. In their decision-making, they involved the requirements of small investors. The most common requirements were selected: the construction cost, the construction time (represented by the total man-hours), the thermal conductivity coefficient, the diffusion resistance factor, and the reaction to fire. The confidences of the criteria were then determined with the help of the pairwise comparison method. This was followed by multi-criteria decision-making using the method of index coefficients, also known as the method of basic variant. The multi-criteria decision-making included thermal insulation systems based on polystyrene, mineral wool, thermal insulation plaster, and aerogels’ nanotechnology. As a result, it was concluded that, currently, in Slovakia, small investors emphasize the cost of material and the coefficient of thermal conductivity and they do not care as much about the carbon footprint of the material manufacturing, the importance of which is mentioned in this study.


Author(s):  
Xiafan Xu ◽  
Jianpeng Zheng ◽  
Hao Xu ◽  
Liubiao Chen ◽  
Junjie Wang

Abstract Composite passive insulation technology has been proved to be an effective method to reduce heat leakage into the cryogenic storage tank. However, the current related research mainly focused on liquid hydrogen (LH2). The thermophysical properties of different cryogenic liquids and the thermal insulation materials at different temperatures are significantly different, so whether the results related to LH2 are applicable to other cryogenic liquids remains to be further determined. In fact, the insulation technology of LH2 itself also needs further study. In this paper, a thermodynamic calculation model of a composite insulation system including hollow glass microspheres (HGMs), multilayer insulation (MLI), and self-evaporating vapor cold shield (VCS) has been established. The accuracy of the calculation model was verified by the experimental results, and a comparative study on thermodynamic characteristics of the composite thermal insulation system with liquid methane, liquid oxygen (LO2), and LH2 was carried out. The results show that the heat leakage reduction of the proposed system for liquid methane, LO2 and LH2 is 25.6%, 29.7% and 64.9% respectively compared to the traditional SOFI+MLI system (1*10−3 Pa). The type of liquid and the insulation system structure has a relatively large influence on the VCS optimal position. While for a specific insulation system structure, the insulation material thickness, storage pressure, and hot boundary temperature have a weak influence on the VCS optimal position.


2011 ◽  
Vol 335-336 ◽  
pp. 1412-1417 ◽  
Author(s):  
Jiri Zach ◽  
Jitka Peterková ◽  
Vít Petranek ◽  
Jana Kosíková ◽  
Azra Korjenic

Production of building materials is mostly energy consuming. In the sphere of insulation materials we mostly see rock wool based materials or foam-plastic materials whose production process is demanding from material aspect and raw materials aspect as well. At present the demand for thermal insulation materials has been growing globally. The thermal insulation materials form integral part of all constructions in civil engineering. The materials mainly fulfill the thermal insulating functions and also the sound-insulating one. The majority of thermal insulation materials are able to fulfill both of the functions simultaneously. The paper describes questions of thermal insulation materials development with good sound properties based on natural fibres that represent a quickly renewable source of raw materials coming from agriculture. The main advantage of the materials are mainly the local availability and simple renewability of the raw materials. In addition an easy recycling of the materials after their service life end in the building construction and last but not least also the connection of human friendly properties of organic materials with advanced product manufacture qualities of modern insulation materials.


Sign in / Sign up

Export Citation Format

Share Document