scholarly journals Time Domain Reflectometry (TDR) technique – A solution to monitor moisture content in construction materials

2020 ◽  
Vol 172 ◽  
pp. 17001
Author(s):  
Teresa Stingl Freitas ◽  
Ana Sofia Guimarães ◽  
Staf Roels ◽  
Vasco Peixoto de Freitas ◽  
Andrea Cataldo

Measuring moisture content in building materials is crucial for the correct diagnosis of buildings’ pathologies and for the efficiency evaluation of the treatment solution applied. There are several different techniques available to measure the moisture content in construction materials. However, perform long-term minor-destructive measurements is still a great challenge. The TDR – Time Domain Reflectometry – technique is commonly used for moisture content measurements in soils, but is considered a relatively new method with regard to its application in construction materials. In the present state of research, the current use of the TDR technique for monitoring moisture content in all types of consolidated porous building materials is not possible yet. Indeed, the empirical conversion functions proposed for soils are mostly not suitable for building materials. Furthermore, to successfully use the TDR technique, a good contact between the TDR probe and the material under study is required, which may be difficult to achieve in hard materials. In this paper, the TDR technique was implemented in two limestone walls constructed in the lab to test experimentally the efficiency of a wall-base ventilation channel to speed up drying after a flood. Each wall was equipped with four two-rod TDR probes for continuous monitoring the moisture content in both situations: with and without the ventilation channel. All the equipment used, procedures followed during the drilling until the probes’ final installation, as well as the individual calibration required for each probe are explained in detail. Instead of using unsuitable functions proposed for soils, the evaluation of the moisture content from the apparent relative dielectric permittivity measured was established using as reference method the gravimetric method. The results obtained suggest that the TDR technique is suitable for moisture content monitoring in consolidated porous building materials.

2020 ◽  
Vol 12 (19) ◽  
pp. 7855 ◽  
Author(s):  
Teresa Stingl Freitas ◽  
Ana Sofia Guimarães ◽  
Staf Roels ◽  
Vasco Peixoto de Freitas ◽  
Andrea Cataldo

Measuring moisture content in building materials is essential both for professional practice and for research. However, this is a very complex task, especially when long-term minor destructive measurements are desired. The time-domain reflectometry (TDR) technique is commonly used for soil moisture measurements, but its application in construction materials is considered a relatively new method, particularly for low-porosity building materials. The major obstacles to its current use in construction materials are (1) the difficulty of ensuring good contact between the TDR probe and the material, and (2) the lack of appropriate conversion functions between the measured relative permittivity and the moisture content of building materials. This paper intends to contribute to overcoming these difficulties by explaining in detail all the required steps to monitor moisture content in real-scale limestone walls. For that, a device is presented to guarantee the correct installation of the TDR probes on the walls, and a calibration procedure through the gravimetric method is proposed to avoid the use of an unsuitable calibration function developed for soil moisture measurements. In addition, the importance of the individual probe calibration is discussed, as well as TDR advantages and disadvantages for construction materials. The results obtained so far reveal that the TDR technique is suitable to detect moisture content variations in limestone, which is a low-porosity building material.


2007 ◽  
Vol 2 (3) ◽  
pp. 188-200 ◽  
Author(s):  
Zbysek Pavlik . ◽  
Milena Pavlikova . ◽  
Lukas Fiala . ◽  
Robert Cerny . ◽  
Henryk Sobczuk . ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1677 ◽  
Author(s):  
Przemysław Brzyski ◽  
Zbigniew Suchorab

The use of waste plants in the production of building materials is consistent with the principles of sustainable development. One of the ideas involves using hemp shives as an aggregate for the production of a composite used as a filling of the timber frame construction of the walls. The most important disadvantage of using the building materials based on organic components is their susceptibility to the water influence. The wall material is exposed to rising groundwater. The research part of the paper presented the preparation method and the investigation of the hemp-perlite-lime composites. Flexural and compressive strength, apparent density, total porosity, thermal conductivity, and mass absorptivity were examined. The main research part pertained to the analysis of capillary uptake occurrence in the composites, being the important phenomenon present in the external walls. The study on this phenomenon was carried out using the technique of indirect moisture evaluation—Time Domain Reflectometry (TDR). The indirect readouts were additionally verified with the traditional evaluation using the gravimetric method based on the PN-EN 1925 standard. The study proved that the tested composites were characterized by low apparent density, thermal conductivity, strength parameters, high total porosity, and mass absorptivity. The partial replacement of hemp shives by expanded perlite had a beneficial effect on the tested properties of composites.


2019 ◽  
Vol 282 ◽  
pp. 02051
Author(s):  
Teresa Stingl Freitas ◽  
Ana Sofia Guimarães ◽  
Vasco Peixoto de Freitas

Measuring moisture content in building materials is crucial for the correct diagnosis of buildings pathologies, for the adoption of appropriate intervention measures and for the efficiency evaluation of the treatment solutions applied. There are several different techniques available to measure and monitoring the moisture content in building materials. However, it still remains a great challenge to perform those studies in historical buildings, since minor-destructive techniques are required. Furthermore, if continuous moisture content readings in space are desired, in order to study the moisture transfer phenomenon along the wall thickness, the challenge is even greater. The TDR technique is a relatively new method for measurement of moisture content in building materials with a set of unexplored potentialities capable of satisfying the two mentioned requirements. In this paper, the suitability of the TDR technique to obtain continuous cross-section moisture content profiles has started to be tested on two limestone prototype walls. Each wall was equipped with four TDR probes, designed practically with the same length of the wall thickness and placed at different heights. All the necessary equipment, installation steps, and difficulties are here presented. The preliminary results suggest that the TDR technique is suitable for moisture content monitoring in consolidated porous building materials.


2021 ◽  
Author(s):  
Teresa Stingl Freitas ◽  
Ana Sofia Guimarães ◽  
Staf Roels ◽  
Vasco Peixoto de Freitas ◽  
Andrea Cataldo

1999 ◽  
Vol 5 (6) ◽  
pp. 609-618
Author(s):  
M. Stacheder ◽  
G. Grassegger ◽  
F. Grüner

Abstract A new commercially available dielectric technique for the non-destructive determination of moisture in building materials based on the principle of 'time-domain reflectometry' (TDR) is presented. TDR measurements on samples of sandstone, brick, concrete and floor cover matched very well with results of conventional moisture measuring methods such as oven-drying or calciumcarbide-technique. The new method showed only a low influence of salt content or surface moisture of the material on the results.


Sign in / Sign up

Export Citation Format

Share Document