capillary uptake
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4629
Author(s):  
Przemysław Brzyski ◽  
Piotr Gleń ◽  
Mateusz Gładecki ◽  
Monika Rumińska ◽  
Zbigniew Suchorab ◽  
...  

The aim of the research presented in the article was to check the differences in the hygro-thermal and mechanical properties of hemp-lime composites with different shives fractions, depending on the direction of mixture compaction. The research part of the paper presents the preparation method and investigation on the composites. Thermal conductivity, capillary uptake, as well as flexural and compressive strengths were examined. Additionally, an analysis of the temperature distribution in the external wall insulated with the tested composites was performed. The results confirm that the direction of compaction influences the individual properties of the composites in a similar way, depending on the size of the shives. The differences are more pronounced in the case of the composite containing longer fractions of shives. Both thermal conductivity of the material and the capillary uptake ability are lower in the parallel direction of the compaction process. Composites exhibit greater stiffness, but they fail faster with increasing loads when loaded in the direction perpendicular to compaction.


2020 ◽  
Vol 101 (4) ◽  
Author(s):  
Geoff R. Willmott ◽  
Alice Briole ◽  
Florence Szczepaniak
Keyword(s):  

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1677 ◽  
Author(s):  
Przemysław Brzyski ◽  
Zbigniew Suchorab

The use of waste plants in the production of building materials is consistent with the principles of sustainable development. One of the ideas involves using hemp shives as an aggregate for the production of a composite used as a filling of the timber frame construction of the walls. The most important disadvantage of using the building materials based on organic components is their susceptibility to the water influence. The wall material is exposed to rising groundwater. The research part of the paper presented the preparation method and the investigation of the hemp-perlite-lime composites. Flexural and compressive strength, apparent density, total porosity, thermal conductivity, and mass absorptivity were examined. The main research part pertained to the analysis of capillary uptake occurrence in the composites, being the important phenomenon present in the external walls. The study on this phenomenon was carried out using the technique of indirect moisture evaluation—Time Domain Reflectometry (TDR). The indirect readouts were additionally verified with the traditional evaluation using the gravimetric method based on the PN-EN 1925 standard. The study proved that the tested composites were characterized by low apparent density, thermal conductivity, strength parameters, high total porosity, and mass absorptivity. The partial replacement of hemp shives by expanded perlite had a beneficial effect on the tested properties of composites.


2020 ◽  
Vol 70 (338) ◽  
pp. 219
Author(s):  
R. Bustamante ◽  
P. Vázquez ◽  
P. Rodríguez-Monteverde ◽  
J. Monjo

The advanced condition of deterioration of the column’s bases of the courtyard of the Bishop’s Palace of Tarazona (Spain) built in the middle of 16th century required its restoration with Aragonese alabaster. Thus, adapted ageing tests were developed to simulate the environmental conditions in which the stones were and will be exposed. These tests were thermal fatigue by temperature variations, acid rain and water stagna­tion by immersion tests and a combination of both agents of decay. The results indicated that alabaster did not experimented deformation after thermal fatigue but a progressive dehydration to bassanite. This process entailed an increase of porosity and consequently a loss of structural properties. The dissolution was measured as a lineal weight and volume loss while porosity and capillary uptake remained stable. The conclusions of this study establish the importance of restoration protocols to maintain the alabaster integrity when used and exposed to rainwater and insolation.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3935 ◽  
Author(s):  
Zbigniew Suchorab ◽  
Marcin Widomski ◽  
Grzegorz Łagód ◽  
Danuta Barnat-Hunek ◽  
Dariusz Majerek

The article presents the potential application of the time domain reflectometry (TDR) technique to measure moisture transport in unsaturated porous materials. The research of the capillary uptake phenomenon in a sample of autoclaved aerated concrete (AAC) was conducted using a TDR sensor with the modified construction for non-invasive testing. In the paper the basic principles of the TDR method as a technique applied in metrology, and its potential for measurement of moisture in porous materials, including soils and porous building materials are presented. The second part of the article presents the experiment of capillary rise process in the AAC sample. Application of the custom sensor required its individual calibration, thus a unique model of regression between the readouts of apparent permittivity of the tested material and its moisture was developed. During the experiment moisture content was monitored in the sample exposed to water influence. Monitoring was conducted using the modified TDR sensor. The process was additionally measured using the standard frequency domain (FD) capacitive sensor in order to compare the readouts with traditional techniques of moisture detection. The uncertainty for testing AAC moisture, was expressed as RMSE (0.013 cm3/cm3) and expanded uncertainty (0.01–0.02 cm3/cm3 depending on moisture) was established along with calibration of the applied sensor. The obtained values are comparable to, or even better than, the features of the traditional invasive sensors utilizing universal calibration models. Both, the TDR and capacitive (FD) sensor enabled monitoring of capillary uptake phenomenon progress. It was noticed that at the end of the experiment the TDR readouts were 4.4% underestimated and the FD readouts were overestimated for 12.6% comparing to the reference gravimetric evaluation.


Holzforschung ◽  
2017 ◽  
Vol 71 (2) ◽  
pp. 119-128 ◽  
Author(s):  
Maziar Sedighi Moghaddam ◽  
Jan Van den Bulcke ◽  
Magnus E.P. Wålinder ◽  
Per M. Claesson ◽  
Joris Van Acker ◽  
...  

Abstract X-ray computed tomography (XCT) was utilized to visualize and quantify the 2D and 3D microstructure of acetylated southern yellow pine (pine) and maple, as well as furfurylated pine samples. The total porosity and the porosity of different cell types, as well as cell wall thickness and maximum opening of tracheid lumens were evaluated. The wetting properties (swelling and capillary uptake) were related to these microstructural characteristics. The data show significant changes in the wood structure for furfurylated pine sapwood samples, including a change in tracheid shape and filling of tracheids by furan polymer. In contrast, no such changes were noted for the acetylated pine samples at the high resolution of 0.8 μm. The XCT images obtained for the furfurylated maple samples demonstrated that all ray cells and some vessel elements were filled with furan polymer while the fibers largely remained unchanged. Furfurylation significantly decreased the total porosity of both the maple and pine samples. Furthermore, this was observed in both earlywood (EW) and latewood (LW) regions in the pine samples. In contrast, the total porosity of pine samples was hardly affected by acetylation. These findings are in line with wetting results demonstrating that furfurylation reduces both swelling and capillary uptake in contrast to acetylation which reduces mostly swelling. Furfurylation significantly increased the cell wall thickness of both the maple and pine samples, especially at higher levels of furfurylation.


Soft Matter ◽  
2017 ◽  
Vol 13 (34) ◽  
pp. 5731-5740 ◽  
Author(s):  
Soumyajyoti Chatterjee ◽  
Pankaj Doshi ◽  
Guruswamy Kumaraswamy

The capillarity-driven uptake of liquid in swellable, highly porous sponges is systematically investigated.


2013 ◽  
Vol 12 (4) ◽  
pp. 083-093
Author(s):  
Zbigniew Suchorab ◽  
Stanisław Fic ◽  
Danuta Barnat-Hunek

Article discusses measuring potential of the TDR (Time Domain Reflectometry) technique for terrain measurement of moisture in the masonries of the historical buildings. For the measurements it was applied modified TDR probe which enables noninvasive moisture detection in building materials, thus enables its application for in-situ measurements, especially in old, historical objects. Terrain measurements were realized on the external masonry made of red ceramic brick, being the part of the historical hospital located on the area of the “Wojewódzki Samodzielny Psychiatryczny Zespół Publicznych Zakładów Opieki Zdrowotnej im. prof. dr Jana Mazurkiewicza” in Pruszków. The masonry is stricken with capillary rise phenomenon by the water coming from the ground, which is also visible by visual observation. Conducted measurement enabled quantitative estimation of the phenomenon which threatens to the discussed object. Within the research, reflectometric measurements were conducted using the prototype surface TDR probes. Measurements were repeated to verify moisture changes in time. First series of measurement was conducted in summertime, in July 2010. The second one was conducted in November of the same year. Then, with the obtained data there were drawn moisture maps of the masonry, which indicated horizontal and vertical variations of moisture and interpretation of the obtained results enabled to confirm capillary uptake process in the examined masonry.


Anaesthesia ◽  
2008 ◽  
Vol 63 (4) ◽  
pp. 358-363 ◽  
Author(s):  
P. J. Peyton ◽  
M. Fortuin ◽  
G J. B. Robinson ◽  
C. Stuart-Andrews ◽  
R. Pierce ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document