scholarly journals Issues of using local energy systems with hydraulic energy storage in the power system of the republic of Uzbekistan

2020 ◽  
Vol 216 ◽  
pp. 01138
Author(s):  
M. M Mukhammadiev ◽  
B. U Urishev ◽  
A Abduaziz uulu ◽  
S. K Gadaev ◽  
S. U Zhankabylov

The method of determining the main energy parameters of a local energy system based on renewable sources with hydraulic accumulation of part of the generated energy is considered. The example shows the economic efficiency of hydraulic energy storage in comparison with lithium-ion batteries.

2021 ◽  
Author(s):  
William Seward ◽  
Weiqi Hua ◽  
Meysam Qadrdan

Traditionally, power system operation has relied on supply side flexibility from large fossil-based generation plants to managed swings in supply and/or demand. An increase in variable renewable generation has increased curtailment of renewable electricity and variations in electricity prices. Consumers can take advantage of volatile electricity prices and reduce their bills using electricity storage. With reduced fossil-based power generation, traditional methods for balancing supply and demand must change. Electricity storage offers an alternative to fossil-based flexibility, with an increase expected to support high levels of renewable generation. Electrochemical storage is a promising technology for local energy systems. In particular, lithium-ion batteries due to their high energy density and high efficiency. However, despite their 89% decrease in capital cost over the last 10 years, lithium-ion batteries are still relatively expensive. Local energy systems with battery storage can use their battery for different purposes such as maximising their self-consumption, minimising their operating cost through energy arbitrage which is storing energy when the electricity price is low and releasing the energy when the price increases, and increasing their revenue by providing flexibility services to the utility grid. Power rating and energy capacity are vitally important in the design of an electricity storage system. A case study is given for the purpose of providing a repeatable methodology for optimally sizing of a battery storage system for a local energy system. The methodology can be adapted to include any local energy system generation or demand profile.


2021 ◽  
Vol 266 ◽  
pp. 04012
Author(s):  
A. Deev ◽  
V. Lebedev

This article examines the influence of energy storage on the possibility of increasing the efficiency of a power plant on the example of the model of the power system of the Taimyr coal basin. The main elements of the power system calculated in this paper included: household consumers (township of Dixon), industrial consumers (coal mining enterprises), sources of thermal and electric energy (coal-fired combined heat and power plant). Storage equipment was selected for the storage of thermal and electrical energy in the power system, such as energy storage systems based on lithium-ion batteries and hot water storage tanks. The changes in the operation modes of the combined heat and power plant during the introduction of battery systems in the power system were evaluated, and the efficiency of the combined heat and power plant was calculated for various modes of energy storage.


2009 ◽  
Vol 60-61 ◽  
pp. 74-78 ◽  
Author(s):  
Yong Tai He ◽  
Li Hui Liu ◽  
Yan Qiu Li ◽  
Lei Wang

In self-power sensor nodes, the capability of energy harvesting and storing of the solar micro-power system determines their lifetime and adaptability to the environment. As a load of solar cells, energy storage devices directly influence the output conversion efficiency of solar cells and output power of solar micro-power system. In this paper, the advantages and disadvantages of NiCD batteries, NiMH batteries, Polymer Lithium-ion batteries and Super-capacitors are analyzed based on features of the solar micro-power system. A hybrid storage system combined with Polymer Lithium-ion batteries and the super-capacitors is designed. Experimental results show that the power density of hybrid storage system is larger than that of Polymer Lithium-ion batteries. The capability of pulsing load is improved over 60%, and the energy storage loss is reduced.


2021 ◽  
Author(s):  
Samuel Robinson ◽  
Alona Armstrong

<p>Energy systems around the world are rapidly transitioning towards decentralised and digitalised systems as countries aim to decarbonise their economies. However, broader environmental effects of the upscaling of these smart local energy systems (SLES) beyond reducing carbon emissions remain unclear. Land-use change associated with increased deployment of renewables, new infrastructures required for energy distribution and storage, and resource extraction for emerging energy technologies may have significant environmental impacts, including consequences for ecosystems within and beyond energy system project localities. This has major implications for biodiversity, natural capital stocks and provision of ecosystem services, the importance of which are increasingly recognised in development policy at local to international scales. This study assessed current understanding of the broader environmental impacts and potential co-benefits of SLES through a global Rapid Evidence Assessment of peer-reviewed academic literature, with a critical evaluation and synthesis of existing knowledge of effects of SLES on biodiversity, natural capital and ecosystem services. There was a striking overall lack of evidence of the environmental impacts of SLES. The vast majority of studies identified considered only energy technology CO<sub>2</sub> emissions through simulation modelling; almost no studies made explicit reference to effects on ecosystems. This highlights an urgent need to improve whole system understanding of environmental impacts of SLES, crucial to avoid unintended ecosystem degradation as a result of climate change mitigation. This will also help to identify potential techno-ecological synergies and opportunities for improvement of degraded ecosystems alongside reaching decarbonisation goals.</p>


Author(s):  
M. S. A. Mustaza ◽  
M. A. M. Ariff ◽  
Sofia Najwa Ramli

Energy storage system (ESS) plays a prominent role in renewable energy (RE) to overcome the intermittent of RE energy condition and improve energy utilization in the power system. However, ESS for residential applications requires specific and different configuration. Hence, this review paper aims to provide information for system builders to decide the best setup configuration of ESS for residential application. In this paper, the aim is to provide an insight into the critical elements of the energy storage technology for residential application. The update on ESS technology, battery chemistry, battery charging, and monitoring system and power inverter technology are reviewed. Then, the operation, the pro, and cons of each variant of these technologies are comprehensively studied. This paper suggested that the ESS for residential ESS requires NMC battery chemistry because it delivers an all-rounded performance as compared to other battery chemistries. The four-stages constant current (FCC) charging technique is recommended because of the fast charging capability and safer than other charging techniques reviewed. Next, the battery management system (BMS) is recommended to adapt in advance machine learning method to estimate the state of charge (SOC), state of health (SOH) and internal temperature (IT) to increase the safety and prolong the lifespan of the batteries. Finally, these recommendations and solutions aimed to improve the utilization of RE energy in power system, especially in residential ESS application and offer the best option that is available on the shelf for the residential ESS application in the future.


2021 ◽  
Author(s):  
Mohammad Hassan Amir Jamlouie

Over the last century, the energy storage industry has continued to evolve and adapt to changing energy requirements. To run an efficient energy storage system two points must be considered. Firstly, precise load forecasting to determine energy consumption pattern. Secondly, is the correct estimation of state of charge (SOC). In this project there is a model introduced to predict the load consumption based on ANN implemented by MATLAB. The Designed intelligent system introduced for load prediction according to the hypothetical training data related to two years daily based load consumption of a residential area. For another obstacle which is accurate estimation of SOC, two separate models are provided based on ANN and ANFIS for Lithium-ion batteries as an energy storage system. There are several researches in this regard but in this project the author makes an effort to introduce the most efficient based on the MSE of each performance and as a result the method by ANN is found more accurate.


Sign in / Sign up

Export Citation Format

Share Document