scholarly journals Research on Bearing Capacity of Simply Supported Skew Bridge Based on Load Test

2021 ◽  
Vol 233 ◽  
pp. 03008
Author(s):  
Songhui Li ◽  
Honglei Li ◽  
Jinjin Gao

The purpose of this paper is to use static and dynamic load tests to evaluate the mechanical performance of a simply supported skew slab bridge and to evaluate its actual bearing capacity. Firstly, the Midas Civil software is used for theoretical simulation, and secondly, the deflection, strain, and dynamic response of the key section of the bridge are studied through static and dynamic load tests. Finally, the measured values and theoretical values are compared and analyzed. The results show that: under static load, the relative residual deflection and relative residual strain of the measuring point of the structure are between -13.8%~-0.4% and -16.7%~1.8% respectively; Under dynamic load, the first-order vertical natural frequency of the test section is 7.813, and the damping ratio is 0.0316, indicating that the bridge is in an elastic working state under the test load, and the stiffness and bearing capacity can meet the requirements of the current code.

2011 ◽  
Vol 250-253 ◽  
pp. 1422-1425
Author(s):  
Ping Zhang ◽  
Lei Wang ◽  
Dong Xiao Li

It may appear different diseases after years of operation on old bridges. In order to understand the actual working condition and the bearing capacity of the bridge, the static and dynamic tests are taken. It describes the principle and methods for the load test via taking Banlashan Arch Bridge for example in this paper. The stiffness, strength and dynamic characteristics of bridge structure are measured, and the maintenance and reinforcing schemes are proposed, according to the results of static and dynamic load tests. Through analyzing the tests, the data and information of bridge can be accumulated, and the mechanical characteristics of this kind of bridge are discussed.


2021 ◽  
Vol 233 ◽  
pp. 01047
Author(s):  
Mao He ◽  
Xin Fu ◽  
Shunchao Chen

Dynamic load test is to measure the natural vibration characteristics of the bridge structure or the forced vibration characteristics under dynamic load, and to evaluate the driving performance, driving safety and comfort of the bridge through dynamic load test. In order to evaluate the stress state and working performance of a reinforced concrete box-ribbed arch bridge, the load test of the bridge is carried out. Dynamic load test is used to test the inherent fundamental frequency, damping ratio and impact coefficient of the bridge through pulsation test and sports car test. Through the experiment with the key parts of the stress (strain) and displacement load and other important data, through analysis and study, the comprehensive analysis of the phenomenon of calculation and test, a comprehensive performance evaluation structure and function whether meet the design requirements, to provide technical basis for the safety of the bridge operation, and provide the original material for the bridge maintenance and management in the future.


2015 ◽  
Vol 36 (2) ◽  
pp. 45-49 ◽  
Author(s):  
Zygmunt Meyer

Abstract Statistic load test is the most commonly used method for estimation of the bearing capacity of piles. From the test we obtain the series a values: load-settlement, Q–s curve. In practice, it is extremely difficult to reach the critical load of the pile when the settlement turns out of control. The existing methods that allow bearing capacity to be calculated give the value which is very often 1/10 of the critical load. The question arises if it is possible based upon short series of load, i.e., 0–0.4 critical load, to predict the critical value of the load, with accuracy which is sufficient for practical calculation. The paper presents a method how to calculate the critical load based upon short series of load in the static load tests.


1998 ◽  
Vol 35 (5) ◽  
pp. 801-810 ◽  
Author(s):  
Ping-Sien Lin ◽  
Li-Wen Yang ◽  
C Hsein Juang

This paper presents the result of plate-load tests conducted on a gravelly cobble deposit in Taichung Basin, Taiwan. The geologic formation of the gravelly cobble deposit makes it very difficult to obtain large undisturbed samples for laboratory testing. These field tests provide an opportunity to examine the applicability of existing theories on bearing capacity and subgrade reaction in this geologic formation. The modulus of subgrade reaction is of particular importance in the local practice of designing high-rise buildings on mat foundations. The results of the plate-load tests on this soil deposit are analyzed and discussed.Key words: plate-load test, gravelly cobble deposit, modulus of subgrade reaction, bearing capacity.


2021 ◽  
Vol 143 (2) ◽  
pp. 252-260
Author(s):  
R.Е. Lukpanov ◽  
◽  
S.B. Yenkebayev ◽  
D.V. Tsigulyov ◽  
◽  
...  

2013 ◽  
Vol 361-363 ◽  
pp. 1101-1104
Author(s):  
Qing Yun Zhao ◽  
Lei Wang ◽  
Shi Hua Yu ◽  
Zhi Qiang Lu ◽  
Yue Long Sun

Ramp bridges are usually curved girder bridges, and show unique mechanical characteristics under live load. On the basis of an interchange ramp bridge static and dynamic load test in a radius of 230m, the bridges stress, deflection and dynamic characteristics were analyzed and the bearing capacity was evaluated.


2011 ◽  
Vol 255-260 ◽  
pp. 1230-1235 ◽  
Author(s):  
Zhi Wei Qi ◽  
Shu Jun Fang ◽  
Guan Dong Lin ◽  
Hua Wang

A static and dynamic load test is carried out on the constructed Hanjiang Super-major Railway Bridge in Laohekou to ensure the reliability of the bridge and test the carrying capacity and working condition of the bridge structure. The static load test is divided into three kinds of loading conditions, each of which tests the stress and deflection of the key sections of the bridge. The transverse vibration displacement of the piers and mid-span section is measured in the dynamic load test when the train is crossing the bridge at different speeds, and the vertical dynamic deflection of the mid-span section is also tested. The natural vibration frequency, the vibration types and the damping ratio of the whole bridge are measured in the pulsating experiment. Through the comparative analysis of the experimental results and the theoretical calculation results and standard, it can be concluded that the strength, the vertical and lateral stiffness of the bridge meet the requirements of both the design and specifications, and that the bridge is in a good working condition. The test and the analysis of the experimental results of the bridge can serve as a reference to the bridges of the same type.


2019 ◽  
Vol 136 ◽  
pp. 04064
Author(s):  
Shengtao Yuan ◽  
Weilong Zheng ◽  
Shunchao Chen ◽  
Chuanwen Hu ◽  
Wenbo Luo ◽  
...  

Dynamic load test of bridge is one of the important indexes to evaluate bridge operation and bearing capacity, however, the test of the lateral distribution of bridge is one of the important means to evaluate the state of bridge. In order to evaluate the stress condition and working performance of a box girder bridge in a mining area under the special load of 100T, dynamic load test and lateral load distribution are studied, dynamic load test is to test the natural vibration frequency damping ratio and impact coefficient of the bridge through pulsating test and traffic running test, the transverse distribution of load is analyzed by deflection method and the experimental value of transverse distribution coefficient is compared with the theoretical value of girder method. The results show that under dynamic load, the first vertical natural vibration frequency of the bridge is 10.986, the damping ratio is 0.015%, and the impact coefficient is 1.07~1.26, the vertical measured fundamental frequency is larger than the calculated fundamental frequency, and the overall stiffness of the bridge meets with the design specification; the transverse connection among the box girders is close and the lateral distribution of load meets with the requirement of the design specification.


Sign in / Sign up

Export Citation Format

Share Document