scholarly journals Static Load Tests, Short Series Interpretation

2015 ◽  
Vol 36 (2) ◽  
pp. 45-49 ◽  
Author(s):  
Zygmunt Meyer

Abstract Statistic load test is the most commonly used method for estimation of the bearing capacity of piles. From the test we obtain the series a values: load-settlement, Q–s curve. In practice, it is extremely difficult to reach the critical load of the pile when the settlement turns out of control. The existing methods that allow bearing capacity to be calculated give the value which is very often 1/10 of the critical load. The question arises if it is possible based upon short series of load, i.e., 0–0.4 critical load, to predict the critical value of the load, with accuracy which is sufficient for practical calculation. The paper presents a method how to calculate the critical load based upon short series of load in the static load tests.

2020 ◽  
Vol 10 (16) ◽  
pp. 5492
Author(s):  
Michał Baca ◽  
Włodzimierz Brząkała ◽  
Jarosław Rybak

This work examined a new method of bi-directional static load testing for piles, referencing the Osterberg test. Measurements were taken, on a laboratory scale, using six models of piles driven into a box filled with sand. This method allowed for separate measurements of pile base and pile shaft bearing capacities. Based on the results, the total pile bearing capacity and equivalent Q–s diagrams were estimated. The results obtained show that the structure of the equivalent curve according to Osterberg is a good approximation of the standard Q–s curve obtained from load tests, except for loads close to the limit of bearing capacity (those estimates are also complicated by the inapplicability and ambiguity of a definition of the notion of limit bearing capacity); the equivalent pile capacity in the Osterberg method represents, on average, about 80% of the capacity from standard tests.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1890 ◽  
Author(s):  
Daehyeon Kim ◽  
Kyemoon Baek ◽  
Kyungho Park

This study aims to improve shafts with hexagonal joints so that they will not require welding or bolts in static load tests. In order to evaluate the bearing capacity of helical piles, two sites were selected to conduct pile installation for the field test and the pile load test. For the pile load test, a static pile load test and a dynamic pile load test were carried out, and torque was measured during pile installation in a field test to compare and analyze the expected bearing capacity and thus assess the feasibility of the method for estimating the bearing capacity. The field pile load test revealed that the bearing capacity of the gravity grout pile was the same or greater than 600 kN in the static pile load test in accordance with the AC 358 code. The non-grout pile showed a bearing capacity that was the same or smaller than 600 kN, suggesting that gravity grouting is required. Moreover, the field pile load test was used to establish the bearing capacity equation considering the torque in the pile installation, and a small number of samples were used to establish the equation, which can be used as basic data.


Author(s):  
A. Z. Zhussupbekov ◽  
Z. A. Shakhmov ◽  
G. T. Tleulenova ◽  
S. B. Akhazhanov

In this paper the analysis results of precast piles different tests are presented. Extreme soil conditions of Astana (Kazakhstan) involve realizing the work precast piles in various soil ground and interaction soil ground and piles. There were carried out dynamic and static load tests of piles in extreme soil ground conditions in Astana. Based on data results of pile foundations the piles bearing capacity was determined. According to the results of DLT with PDA of driving piles (30.0 cm) the bearing capacity of the piles is 911 kN. The bearing capacity of the driven piles according to the results of SLT amounted to be 878 kN. Soils physic-mechanical properties in extreme conditions of Astana along with graphs of dependence are between settlement and load. The precise analysis of climatic and geological factors of the construction sites is shown. Investigations method for precast concrete piles testing is presented. Dynamic load test methodology in Astana for concrete piles testing is shown.  These investigations are important for of Pile-Soil interaction on problematical soil ground.


2000 ◽  
Vol 37 (6) ◽  
pp. 1283-1294 ◽  
Author(s):  
Caizhao Zhan ◽  
Jian-Hua Yin

The Mass Transit Railway Corporation proposes to construct the Tseung Kwan O Depot (TKD) within Area 86 reclamation at Tseung Kwan O as part of the Tseung Kwan O Extension. The proposed foundation for the TKD comprises about 1000 large-diameter, bored, cast in situ, drilled shafts founded on or socketed into rock. To confirm the design allowable end bearing capacity and rock socket side resistance for the drilled shaft foundations, two test piles were constructed and tested. Both test piles were instrumented with strain gauges and rod extensometers. This paper presents the static compressive load test results on both test piles. The test results indicate that an end bearing capacity of 20.8 MPa (design allowable 7.5 MPa) and rock socket side resistance 2.63 MPa (design allowable 0.75 MPa) are achieved during the pile load tests with no sign of failure.Key words: drilled shaft, static load test, end bearing capacity, rock socket, rock socket side resistance, load transfer.


2018 ◽  
Vol 251 ◽  
pp. 04038 ◽  
Author(s):  
Michal Baca ◽  
Jaroslaw Rybak

Presented laboratory testing program of tubular steel piles is a part of a bigger research program which contained static load tests in full scale and numerical simulations of conducted research. The main goal of the research is to compare static load tests with different working conditions of a shaft. The presented small scale model tests are the last part of the research. The paper contains the testing methodology description and first results of model pile axial loading. The static load tests in a small laboratory scale were conducted in a container filled with uniformly compacted medium sand (MSa). The first results of the investigation are presented in this paper, with the comparison of two pile capacities obtained for different roughness of the pile shaft (skin friction). The results are presented as load-displacement curves obtained by means of the Brinch-Hansen 80% method.


2015 ◽  
Vol 77 (11) ◽  
Author(s):  
Helmy Darjanto ◽  
Masyhur Irsyam ◽  
Sri Prabandiyani Retno

The Spider Net System Footing (SNSF) is a raft foundation system that commonly used in Indonesia. It contains a plate, downward ribs system for reinforcement, and the compacted filled soil. The ribs are in longitudinal and transversal, called as settlement rib and in diagonal direction, named as construction rib. This paper explores the load transfer mechanism along the plate, the ribs, filled soil and the base soil under the footing system. The mechanism is investigated by conducting full scale static load test on SNSF. Strain gauges were installed to monitor the strain increment of each footing elements during loading. 3D numerical analysis was also conducted to verify the experimental results. To analyze the results, Load-Ultimate Ratio Factor (L-URF) was proposed. L-URF was a ratio between ultimate soil bearing capacity of the SNSF and the applied loading at specific element. Higher the L-URF value means higher loading applied at its associate element. Both experimental and numerical results show that at the first stage the loading was fully carried out by the tip of the ribs and transferred to the soil stratum under the footing system. Increasing the loading, the ribs, plate, and filled soil altogether sustain the loading and then transferred to the soil stratum below the footing system. The results also affirm that SNSF generate higher bearing capacity compare with simple shallow footing.  


2013 ◽  
Vol 838-841 ◽  
pp. 854-857
Author(s):  
Rui Chao Cheng ◽  
Xin Yu

The bearing capacity characteristics and side friction characters of post-grouting pile were studied in the static load test which included two piles with post-grouting or not. When the pile head settlements were same, the loads applied on the pile top were used to analyze the bearing properties of post-grouting pile. We got the ultimate side friction of post-grouting pile after fitting test curves of relations between friction resistance and displacement. The tests indicate that both the bearing capacity characteristics and side friction of post-grouting pile are increased in various degrees.


1998 ◽  
Vol 35 (5) ◽  
pp. 801-810 ◽  
Author(s):  
Ping-Sien Lin ◽  
Li-Wen Yang ◽  
C Hsein Juang

This paper presents the result of plate-load tests conducted on a gravelly cobble deposit in Taichung Basin, Taiwan. The geologic formation of the gravelly cobble deposit makes it very difficult to obtain large undisturbed samples for laboratory testing. These field tests provide an opportunity to examine the applicability of existing theories on bearing capacity and subgrade reaction in this geologic formation. The modulus of subgrade reaction is of particular importance in the local practice of designing high-rise buildings on mat foundations. The results of the plate-load tests on this soil deposit are analyzed and discussed.Key words: plate-load test, gravelly cobble deposit, modulus of subgrade reaction, bearing capacity.


Wood Research ◽  
2021 ◽  
Vol 66 (3) ◽  
pp. 477-488
Author(s):  
Liuliu Zhang ◽  
Cheng Chang ◽  
Shuming Yang

Static load tests were carried out on three kinds of triangular girder trusses with different diameter wood dowels, and the effects of that on the structure of girder trusses were discussed. It was found that there was a good synergy between the wood dowels and the girder trusses. Among the triangular girder trusses with different diameters, the 16 mm diameters had the best energy dissipation performance increased by 184% and deformation resistance of 0.73 mm; the 20 mm diameters had the best stability performance, the better bearing capacity of 60.42 kN and deformation resistance of 0.82 mm. The bearing capacity of the double girder trusses was 2.06-2.25 times that of two single trusses, which had the ability to ‘one plus one is greater than two’.


2021 ◽  
Vol 13 (23) ◽  
pp. 13166
Author(s):  
Xusen Li ◽  
Jiaqiang Zhang ◽  
Hao Xu ◽  
Zhenwu Shi ◽  
Qingfei Gao

Prestressed high-strength concrete (PHC) pipe piles have been widely used in engineering fields in recent years; however, the influencing factors of their ultimate bearing capacity (UBC) in multilayer soil need to be further studied. In this paper, a static load test (SLT) and numerical analysis are performed to obtain the load transfer and key UBC factors of pipe piles. The results show that the UBC of the test pile is mainly provided by the pile shaft resistance (PSR), but the pile tip resistance (PTR) cannot be ignored. Many factors can change the UBC of pipe piles, but their effects are different. The UBC of the pipe pile is linearly related to the friction coefficient and the outer-to-inner diameter ratio. Changes in the pile length make the UBC increase sharply. Low temperatures can produce freezing stress at the pile–soil interface. The effect of changing the Young modulus of pile tip soil is relatively small.


Sign in / Sign up

Export Citation Format

Share Document