scholarly journals Research on evaluation method of bearing capacity of existing bridge based on static load test

2021 ◽  
Vol 233 ◽  
pp. 03015
Author(s):  
Qingcheng Yang ◽  
Yufeng Ning ◽  
Weiwei Sun ◽  
Shunchao Cheng

The author carried out static load test research on a prestressed concrete rigid frame bridge. Under the action of static load, the most unfavorable section JM3 on the beam body was measured. The stress and deflection values at each measuring point were measured. The results show that the check coefficient of stress and deflection at each measuring point of the box girder does not exceed the standard limit value 1, the relative residual strain or deformation at each measuring point does not exceed the standard limit value 20%, and the overall bearing capacity of the bridge structure meets the normal use requirements of the design load (highway-I class).

2021 ◽  
Vol 233 ◽  
pp. 03018
Author(s):  
NING Yu-feng ◽  
YANG Qing-cheng ◽  
SUN Wei-wei ◽  
CHEN Shun-chao

In order to evaluate the mechanical condition and working performance of a rigid frame bridge after reconstruction and extension, the mechanical performance of the bridge was analyzed by static load test. Static load test is the test of stress at each section of main beam under the action of partial load and medium load. The results show that, under the action of each load, the check coefficient of strain and deflection at each measuring point of the box girder does not exceed the standard limit value 1, the relative residual strain or deformation at each measuring point does not exceed the standard limit value 20%, the stress condition of the tested section of the box girder is normal, and the structure is under the normal stress state under the action of the test load.


2021 ◽  
Vol 233 ◽  
pp. 03020
Author(s):  
Qingcheng Yang ◽  
Yufeng Ning ◽  
Weiwei Sun ◽  
Shunchao Cheng

The author carried out dynamic load test research on a prestressed concrete rigid frame bridge. Under dynamic load, the ratios of the measured and theoretical frequencies of the first four vertical vibrations of the bridge were 1.081, 1.153 respectively. The corresponding measured damping ratios are 0.011, 0.010 respectively. The maximum dynamic coefficient of bridge sports car test is 1.049, and the corresponding dynamic strain increment coefficient is 0.059. The measured impact coefficient is between 0.012 and 0.049, which is basically equivalent to the design impact coefficient of 0.05.The test results show that the existing bridge works well under the test load, and the bearing capacity of the structure meets the requirements of the design load level.


2015 ◽  
Vol 77 (11) ◽  
Author(s):  
Helmy Darjanto ◽  
Masyhur Irsyam ◽  
Sri Prabandiyani Retno

The Spider Net System Footing (SNSF) is a raft foundation system that commonly used in Indonesia. It contains a plate, downward ribs system for reinforcement, and the compacted filled soil. The ribs are in longitudinal and transversal, called as settlement rib and in diagonal direction, named as construction rib. This paper explores the load transfer mechanism along the plate, the ribs, filled soil and the base soil under the footing system. The mechanism is investigated by conducting full scale static load test on SNSF. Strain gauges were installed to monitor the strain increment of each footing elements during loading. 3D numerical analysis was also conducted to verify the experimental results. To analyze the results, Load-Ultimate Ratio Factor (L-URF) was proposed. L-URF was a ratio between ultimate soil bearing capacity of the SNSF and the applied loading at specific element. Higher the L-URF value means higher loading applied at its associate element. Both experimental and numerical results show that at the first stage the loading was fully carried out by the tip of the ribs and transferred to the soil stratum under the footing system. Increasing the loading, the ribs, plate, and filled soil altogether sustain the loading and then transferred to the soil stratum below the footing system. The results also affirm that SNSF generate higher bearing capacity compare with simple shallow footing.  


2014 ◽  
Vol 707 ◽  
pp. 401-405
Author(s):  
Tao He ◽  
Chong Ji Zhao

Using the finite element software ANSYS to establish the model of prestressed concrete T beam .With the combination of dynamic and static load test data, the objective function was constructed by taking the vertical deflection of the static load test and the top five vertical natural frequency of dynamic test as state variables. The results revealed that,after being modified ,the error between the calculation value and the testal results of the model was converged in a reasonable error range.In addition ,The modified model could be used in the assessment of bridge structure performance,and it shows the practical application value.


2013 ◽  
Vol 838-841 ◽  
pp. 854-857
Author(s):  
Rui Chao Cheng ◽  
Xin Yu

The bearing capacity characteristics and side friction characters of post-grouting pile were studied in the static load test which included two piles with post-grouting or not. When the pile head settlements were same, the loads applied on the pile top were used to analyze the bearing properties of post-grouting pile. We got the ultimate side friction of post-grouting pile after fitting test curves of relations between friction resistance and displacement. The tests indicate that both the bearing capacity characteristics and side friction of post-grouting pile are increased in various degrees.


2021 ◽  
Vol 13 (23) ◽  
pp. 13166
Author(s):  
Xusen Li ◽  
Jiaqiang Zhang ◽  
Hao Xu ◽  
Zhenwu Shi ◽  
Qingfei Gao

Prestressed high-strength concrete (PHC) pipe piles have been widely used in engineering fields in recent years; however, the influencing factors of their ultimate bearing capacity (UBC) in multilayer soil need to be further studied. In this paper, a static load test (SLT) and numerical analysis are performed to obtain the load transfer and key UBC factors of pipe piles. The results show that the UBC of the test pile is mainly provided by the pile shaft resistance (PSR), but the pile tip resistance (PTR) cannot be ignored. Many factors can change the UBC of pipe piles, but their effects are different. The UBC of the pipe pile is linearly related to the friction coefficient and the outer-to-inner diameter ratio. Changes in the pile length make the UBC increase sharply. Low temperatures can produce freezing stress at the pile–soil interface. The effect of changing the Young modulus of pile tip soil is relatively small.


Author(s):  
Masaaki Isa ◽  
Masatsugu Shinohara ◽  
Yasumoto Aoki

<p>Collapse and falling of columnar structures such as road illumination poles installed on a bridge have been confirmed in the past earthquakes. Therefore, it is important to evaluate the seismic resistance of columnar structures from the viewpoint of securing the function as an emergency transportation route in the event of disaster. In this study, the destruction order and destruction form of the road illumination pole in the external force action were analyzed and verified, and the model specimen was produced to carry out the static load test. As a result of the experiment, it was shown that anchor bolts and wall concretes of the base were damaged antecedently.</p>


2017 ◽  
Vol 865 ◽  
pp. 320-324
Author(s):  
Petr Mynarcik ◽  
Jiri Koktan

This experimental static load test is part of research activities scoped on problematics with involved foundation conditions. Especially for areas with influence of undermining or flood hazard. Concept of experiment was designed like a model situation of interaction between concrete column, concrete slab-on-ground and subsoil. During static load process were measured deformations, tensions inside the experimental model and geotechnical values on contact surface of concrete slab-on-ground and subsoil. These data were processed and presented in this article. The described experimental static load test is part of a series of experiments focusing on the problematics of concrete constructions in interaction with subsoil and was realized at the Faculty of Civil Engineering, VŠB –Technical University of Ostrava.


Sign in / Sign up

Export Citation Format

Share Document