scholarly journals Analysis of the static load test results referred to limit the bearing capacity of a pile

Author(s):  
Zygmunt Meyer ◽  
Kamil Stachecki
2014 ◽  
Vol 884-885 ◽  
pp. 698-701
Author(s):  
Yan Zheng Huang ◽  
Shao Bo Zhang ◽  
Wen Yang

Based on Winkler model and engineering example, the behavior of elastic long pile under horizontal load was analyzed in test status while pile top at free. The analysis results show that under same horizontal static load, the maximum of pile shaft bending moment in work status is higher than it in test status. Directly using the horizontal bearing capacity obtained by horizontal static load test in project design is unsafe and inapposite. The horizontal bearing capacity of pile in work status can be get based on the proportion coefficient of the horizontal resistance coefficient.


2000 ◽  
Vol 37 (6) ◽  
pp. 1283-1294 ◽  
Author(s):  
Caizhao Zhan ◽  
Jian-Hua Yin

The Mass Transit Railway Corporation proposes to construct the Tseung Kwan O Depot (TKD) within Area 86 reclamation at Tseung Kwan O as part of the Tseung Kwan O Extension. The proposed foundation for the TKD comprises about 1000 large-diameter, bored, cast in situ, drilled shafts founded on or socketed into rock. To confirm the design allowable end bearing capacity and rock socket side resistance for the drilled shaft foundations, two test piles were constructed and tested. Both test piles were instrumented with strain gauges and rod extensometers. This paper presents the static compressive load test results on both test piles. The test results indicate that an end bearing capacity of 20.8 MPa (design allowable 7.5 MPa) and rock socket side resistance 2.63 MPa (design allowable 0.75 MPa) are achieved during the pile load tests with no sign of failure.Key words: drilled shaft, static load test, end bearing capacity, rock socket, rock socket side resistance, load transfer.


2013 ◽  
Vol 790 ◽  
pp. 227-230
Author(s):  
Jian Feng Su ◽  
Yu Feng Xu

Floor slab static load test is a important method to judge the performance and carrying capacity of the slab. This paper, with the background of a factory frame-structure slab, introduced the testing scheme, the details of the testing process as well as the test results. The testing cases provide a useful reference for the same type of project.


2020 ◽  
Vol 214 ◽  
pp. 110641 ◽  
Author(s):  
Pengzhen Lu ◽  
Zijie Xu ◽  
Yangrui Chen ◽  
Yutao Zhou

2015 ◽  
Vol 77 (11) ◽  
Author(s):  
Helmy Darjanto ◽  
Masyhur Irsyam ◽  
Sri Prabandiyani Retno

The Spider Net System Footing (SNSF) is a raft foundation system that commonly used in Indonesia. It contains a plate, downward ribs system for reinforcement, and the compacted filled soil. The ribs are in longitudinal and transversal, called as settlement rib and in diagonal direction, named as construction rib. This paper explores the load transfer mechanism along the plate, the ribs, filled soil and the base soil under the footing system. The mechanism is investigated by conducting full scale static load test on SNSF. Strain gauges were installed to monitor the strain increment of each footing elements during loading. 3D numerical analysis was also conducted to verify the experimental results. To analyze the results, Load-Ultimate Ratio Factor (L-URF) was proposed. L-URF was a ratio between ultimate soil bearing capacity of the SNSF and the applied loading at specific element. Higher the L-URF value means higher loading applied at its associate element. Both experimental and numerical results show that at the first stage the loading was fully carried out by the tip of the ribs and transferred to the soil stratum under the footing system. Increasing the loading, the ribs, plate, and filled soil altogether sustain the loading and then transferred to the soil stratum below the footing system. The results also affirm that SNSF generate higher bearing capacity compare with simple shallow footing.  


2013 ◽  
Vol 838-841 ◽  
pp. 854-857
Author(s):  
Rui Chao Cheng ◽  
Xin Yu

The bearing capacity characteristics and side friction characters of post-grouting pile were studied in the static load test which included two piles with post-grouting or not. When the pile head settlements were same, the loads applied on the pile top were used to analyze the bearing properties of post-grouting pile. We got the ultimate side friction of post-grouting pile after fitting test curves of relations between friction resistance and displacement. The tests indicate that both the bearing capacity characteristics and side friction of post-grouting pile are increased in various degrees.


2012 ◽  
Vol 517 ◽  
pp. 904-909
Author(s):  
Jun Wei ◽  
Pei Li ◽  
Xia Ban ◽  
Rong Zhen Dong

Fabricated hollow slab bridge is commonly used in China. It is indicated that the hinged joints between hollow slabs are easily damaged. Especially under the erosion of chloride salt, the destruction process of hinged joints will be greatly exacerbated. In this paper, deicing salt environment was simulated in the lab to corrode the commonly used hinged joints. According to static load test results, hollow slab coordinated working coefficient is explored and the regression calculation formula was established. Then, the time-varying function of the rate of hinged joint steel corrosion was introduced to the regression model. Finally, the constantly evaluating of the hinged joint durability performance of common used deep, middle and low hinged joint forms were also carried out.


2012 ◽  
Vol 256-259 ◽  
pp. 1139-1143
Author(s):  
Li Lan Zhang ◽  
Yao Dong Wu

This paper through the test results and theoretical calculation of the batter pile static load, analysis of the actual stress state of cables, and according to the test results to determine the level of the foundation soil resistance coefficient ratio and allow level a transplant.


2021 ◽  
Vol 13 (23) ◽  
pp. 13166
Author(s):  
Xusen Li ◽  
Jiaqiang Zhang ◽  
Hao Xu ◽  
Zhenwu Shi ◽  
Qingfei Gao

Prestressed high-strength concrete (PHC) pipe piles have been widely used in engineering fields in recent years; however, the influencing factors of their ultimate bearing capacity (UBC) in multilayer soil need to be further studied. In this paper, a static load test (SLT) and numerical analysis are performed to obtain the load transfer and key UBC factors of pipe piles. The results show that the UBC of the test pile is mainly provided by the pile shaft resistance (PSR), but the pile tip resistance (PTR) cannot be ignored. Many factors can change the UBC of pipe piles, but their effects are different. The UBC of the pipe pile is linearly related to the friction coefficient and the outer-to-inner diameter ratio. Changes in the pile length make the UBC increase sharply. Low temperatures can produce freezing stress at the pile–soil interface. The effect of changing the Young modulus of pile tip soil is relatively small.


Sign in / Sign up

Export Citation Format

Share Document