scholarly journals Curvature Identities for Generalized Kenmotsu Manifolds

2021 ◽  
Vol 244 ◽  
pp. 09005
Author(s):  
Abu-Saleem Ahmad ◽  
Ivan Kochetkov ◽  
Aligadzhi Rustanov

In the present paper we obtained 2 identities, which are satisfied by Riemann curvature tensor of generalized Kenmotsu manifolds. There was obtained an analytic expression for third structure tensor or tensor of f-holomorphic sectional curvature of GK-manifold. We separated 2 classes of generalized Kenmotsu manifolds and collected their local characterization.

Author(s):  
V. Cortés ◽  
A. Saha ◽  
D. Thung

AbstractWe study the behavior of connections and curvature under the HK/QK correspondence, proving simple formulae expressing the Levi-Civita connection and Riemann curvature tensor on the quaternionic Kähler side in terms of the initial hyper-Kähler data. Our curvature formula refines a well-known decomposition theorem due to Alekseevsky. As an application, we compute the norm of the curvature tensor for a series of complete quaternionic Kähler manifolds arising from flat hyper-Kähler manifolds. We use this to deduce that these manifolds are of cohomogeneity one.


2016 ◽  
Vol 25 (10) ◽  
pp. 1650055 ◽  
Author(s):  
Indranil Biswas ◽  
Niels Leth Gammelgaard

We construct a natural framed weight system on chord diagrams from the curvature tensor of any pseudo-Riemannian symmetric space. These weight systems are of Lie algebra type and realized by the action of the holonomy Lie algebra on a tangent space. Among the Lie algebra weight systems, they are exactly characterized by having the symmetries of the Riemann curvature tensor.


2020 ◽  
Vol 72 (3) ◽  
pp. 427-432
Author(s):  
A. Sarkar ◽  
A. Sil ◽  
A. K. Paul

UDC 514.7 The object of the present paper is to study three-dimensional trans-Sasakian manifolds admitting η -Ricci soliton. Actually, we study such manifolds whose Ricci tensor satisfy some special conditions like cyclic parallelity, Ricci semisymmetry, ϕ -Ricci semisymmetry, after reviewing the properties of second order parallel tensors on such manifolds. We determine the form of Riemann curvature tensor of trans-Sasakian manifolds of dimension greater than three as Kagan subprojective spaces. We also give some classification results of trans-Sasakian manifolds of dimension greater than three as Kagan subprojective spaces.


2021 ◽  
Author(s):  
Shiladittya Debnath

Abstract In this letter, we investigate the basic property of the Hilbert-Einstein action principle and its infinitesimal variation under suitable transformation of the metric tensor. We find that for the variation in action to be invariant, it must be a scalar so as to obey the principle of general covariance. From this invariant action principle, we eventually derive the Bianchi identity (where, both the 1st and 2nd forms are been dissolved) by using the Lie derivative and Palatini identity. Finally, from our derived Bianchi identity, splitting it into its components and performing cyclic summation over all the indices, we eventually can derive the covariant derivative of the Riemann curvature tensor. This very formulation was first introduced by S Weinberg in case of a collision less plasma and gravitating system. We derive the Bianchi identity from the action principle via this approach; and hence the name ‘Weinberg formulation of Bianchi identity’.


Author(s):  
Bohua Sun

The dislocation density tensors of thin elastic shells have been formulated explicitly in terms of the Riemann curvature tensor. The formulation reveals that the dislocation density of the shells is  proportional to KA3=2, where K is the Gauss curvature and A is the determinant of metric tensor ofthe middle surface.


Author(s):  
A.V. Bukusheva

The concept of the intrinsic geometry of a nonholonomic Kenmotsu manifold M is introduced. It is understood as the set of those properties of the manifold that depend only on the framing  of the D^ distribution D of the manifold M, on the parallel transformation of vectors belonging to the distribution D along curves tangent to this distribution. The invariants of the intrinsic geometry of the nonholonomic Kenmotsu manifold are: the Schouten curvature tensor; 1-form η generating the distribution D; the Lie derivative  of the metric tensor g along the vector field ; Schouten — Wagner tensor field P, whose components in adapted coordinates are expressed using the equalities . It is proved that, as in the case of the Kenmotsu manifold, the Schouten — Wagner tensor of the manifold M vanishes. It follows that the Schouten tensor of a nonholonomic Kenmotsu manifold has the same formal properties as the Riemann curvature tensor. It is proved that the alternation of the Ricci — Schouten tensor coincides with the differential of the structural form. This property of the Ricci — Schouten tensor is used in the proof of the main result of the article: a nonholonomic Kenmotsu manifold cannot carry the structure of an η-Einstein manifold.


Filomat ◽  
2018 ◽  
Vol 32 (14) ◽  
pp. 4971-4980 ◽  
Author(s):  
Simeon Zamkovoy

In this paper we study para-Kenmotsu manifolds. We characterize this manifolds by tensor equations and study their properties. We are devoted to a study of ?-Einstein manifolds. We show that a locally conformally flat para-Kenmotsu manifold is a space of constant negative sectional curvature -1 and we prove that if a para-Kenmotsu manifold is a space of constant ?-para-holomorphic sectional curvature H, then it is a space of constant sectional curvature and H = -1. Finally the object of the present paper is to study a 3-dimensional para-Kenmotsu manifold, satisfying certain curvature conditions. Among other, it is proved that any 3-dimensional para-Kenmotsu manifold with ?-parallel Ricci tensor is of constant scalar curvature and any 3-dimensional para-Kenmotsu manifold satisfying cyclic Ricci tensor is a manifold of constant negative sectional curvature -1.


Sign in / Sign up

Export Citation Format

Share Document