scholarly journals Simulation of non-isothermal free turbulent gas jets in the process of energy exchange

2021 ◽  
Vol 264 ◽  
pp. 01017
Author(s):  
Muzaffar Hamdamov ◽  
Akmal Mirzoyev ◽  
Eshmurod Buriev ◽  
Nosirbek Tashpulatov

This article proposes a numerical method for solving the propagation and combustion of a jet of a gas mixture in an axisymmetric satellite air stream. To model the process, the dimensionless equations of the turbulent boundary layer of reacting gases in the Mises coordinates are used. A two-layer four-point nonlinear boundary separation scheme was used to solve the problem in the Mises coordinates, and a second-order along the longitudinal coordinate was given. The iterative process was used because of the nonlinearity of the storage and displacement equations of substations. Individual results of the numerical experiment are presented.

1962 ◽  
Vol 84 (3) ◽  
pp. 235-242 ◽  
Author(s):  
R. A. Seban ◽  
L. H. Back

The effectiveness and the heat transfer have been measured in a system involving the tangential injection of air from a single spanwise slot into the turbulent boundary layer of an external air stream, with the velocity of the external stream increasing in a way that concentrated the acceleration in a region downstream of the initial mixing zone. The effectiveness was changed but little from the value that would have existed had the free-stream velocity remained at its initial value and both temperature profiles and analytical considerations show that this invariability of the effectiveness is associated with thermal boundary-layer thicknesses that are much larger than the hydrodynamic thicknesses. Heat-transfer coefficients are shown to be predictable from existing information provided that the momentum thickness Reynolds number is large enough.


Sign in / Sign up

Export Citation Format

Share Document