scholarly journals Development of αFe2O3-TiO2/PPOdm Mixed Matrix Membrane for CO2/CH4 Separation

2021 ◽  
Vol 287 ◽  
pp. 02013
Author(s):  
Yun Kee Yap ◽  
Pei Ching Oh ◽  
Evan Yew Jin Chin

Magnetophoretic dispersion of magnetic fillers has been proven to improve gas separation performances of mixed matrix membrane (MMM). However, the magnetic field induced is usually in a horizontal or vertical direction during membrane casting. Limited study has been conducted on the effects of rotational magnetic field direction towards dispersion of particles. Thus, this work focuses on the rearrangement of paramagnetic iron oxide-titanium dioxide (αFe2O3-TiO2) nanocomposite in poly (2,6-dimethyl-1,4-phenylene oxide) (PPOdm) membrane via rotational magnetic field to investigate the dispersion of filler and effects towards its overall gas separation performance. The paramagnetic fillers were incorporated into polymer via dry phase inversion method at different weight loading. MMM with 3 wt% loading shows the best performance in terms of particle dispersion and gas separation performance. It shows the greatest relative particles count and least agglomerates via OLYMPUS™ Stream software with image taken by optical microscope. Relative to pristine membrane, it displays a permeability and selectivity increment of 312% and 71%. MMM with 3 wt% loading was refabricated in the presence of rotational magnetic field to enhance the dispersion of paramagnetic fillers. Results display an increment of selectivity by 8% and CO2 permeability by 46% relative to unmagnetised MMM of 3 wt% loading.

2013 ◽  
Vol 832 ◽  
pp. 143-148
Author(s):  
Hani Shazwani Mohd Suhaimi ◽  
Leo Choe Peng ◽  
Ahmad Abdul Latif

Palladium (Pd) nanoparticles offer excellent hydrogen affinity in mixed matrix membrane for gas separation. In order to avoid aggregation, Pd nanoparticles have to be stabilized before blending into polymer matrix. Pd nanoparticles can be thermodynamically stabilized and dispersed using electrostatic and/ or steric forces of a stabilizer which is typically introduced during the formation of Pd nanoparticles in the inversed microemulsion. Polyvinylpyrrolidone, polyethylene glycol (PEG) and sodium hydroxide in ethylene glycol exhibited good effect on particles passivation. However, the effects of these stabilizers on membrane morphology and separation performance were unknown. The aim of this work is to incorporate polymer-stabilized Pd nanoparticles into Polysulfone (PSf) membranes for hydrogen separation. The microstructure of Pd nanoparticles was first analyzed by TEM. Phase inversion method was then adopted for the preparation of asymmetric PSf/nanoPd MMMs. The separation performance of MMMs was investigated by using nitrogen and hydrogen as test gases and the membrane characteristics were further studied using SEM and FTIR. The highest permeability for H2 was 255.82 GPU with selectivity of 6.89. The results suggested that PEG provides good contact between nanoparticles and the polymer. TEM and FTIR results revealed that these stabilizers have significant effects on the synthesized Pd nanoparticles size. Also, SEM results showed that the MMMs incorporated with thermodynamically nanoPd in PEG achieved satisfactory asymmetric structure which explains the good performance in gas separation.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 693
Author(s):  
Fei Guo ◽  
Bingzhang Li ◽  
Rui Ding ◽  
Dongsheng Li ◽  
Xiaobin Jiang ◽  
...  

Mixing a polymer matrix and nanofiller to prepare a mixed matrix membrane (MMM) is an effective method for enhancing gas separation performance. In this work, a unique UiO-66-decorated halloysite nanotubes composite material (UiO-66@HNT) was successfully synthesized via a solvothermal method and dispersed into the Pebax-1657 matrix to prepare MMMs for CO2/N2 separation. A remarkable characteristic of this MMM was that the HNT lumen provided the highway for CO2 diffusion due to the unique affinity of UiO-66 for CO2. Simultaneously, the close connection of the UiO-66 layer on the external surface of HNTs created relatively continuous pathways for gas permeation. A suite of microscopy, diffraction, and thermal techniques was used to characterize the morphology and structure of UiO-66@HNT and the membranes. As expected, the embedding UiO-66@HNT composite materials significantly improved the separation performances of the membranes. Impressively, the as-obtained membrane acquired a high CO2 permeability of 119.08 Barrer and CO2/N2 selectivity of 76.26. Additionally, the presence of UiO-66@HNT conferred good long-term stability and excellent interfacial compatibility on the MMMs. The results demonstrated that the composite filler with fast transport pathways designed in this study was an effective strategy to enhance gas separation performance of MMMs, verifying its application potential in the gas purification industry.


REAKTOR ◽  
2017 ◽  
Vol 11 (1) ◽  
pp. 30 ◽  
Author(s):  
A. F. Ismail ◽  
T. D. Kusworo

This study is performed primarily to investigate the feasibility of fumed silica as inorganic material towards gas separation performance of mixed matrix membrane. In this study, polyimide/ polyethersulfone (PES)-fumed silica mixed matrix membrane were casted using dry/wet technique. The result from the FESEM, DSC and FTIR analysis confirmed that the structure and physical properties of membrane is influenced by inorganic filler. FESEM`s cross-section view indicated good compatibility  between polymer and fumed silica for all of range fumed silica used in this study. The gas separation performance of the mixed matrix membrane with fumed silica were relatively higher compared to that of the neat PI/PES membrane. PI/PES-fumed silica 5 wt% yielded significant selectivity enhancement of 7.21 and 40.47 for O2/N2, and CO2/CH4, respectively.Keywords:  gas separation membrane, mixed matrix membrane, silica


2016 ◽  
Vol 32 (2) ◽  
Author(s):  
Nor Naimah Rosyadah Ahmad ◽  
Hilmi Mukhtar ◽  
Dzeti Farhah Mohshim ◽  
Rizwan Nasir ◽  
Zakaria Man

AbstractThe development of mixed matrix membrane (MMM) in gas separation process has drawn great attention due to its promising properties. MMM consists of a polymer as the matrix phase, whereas the inorganic filler serves as the dispersed phase. However, poor contact between these two phases often results in unselective gas flow and becomes one of the major issues in the MMM development. Currently, various modification techniques of the inorganic filler to improve the compatibility between the polymers and the particles have been reported. Because of this modification, the CO


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 641
Author(s):  
Yun Kee Yap ◽  
Pei Ching Oh

Magnetic-field-induced dispersion of magnetic fillers has been proven to improve the gas separation performance of mixed matrix membranes (MMMs). However, the magnetic field induced is usually in a horizontal or vertical direction. Limited study has been conducted on the effects of alternating magnetic field (AMF) direction towards the dispersion of particles. Thus, this work focuses on the incorporation and dispersion of ferromagnetic iron oxide–titanium (IV) dioxide (αFe2O3/TiO2) particles in a poly (2,6-dimethyl-1,4-phenylene) oxide (PPOdm) membrane via an AMF to investigate its effect on the magnetic filler dispersion and correlation towards gas separation performance. The fillers were incorporated into PPOdm polymer via a spin-coating method at a 1, 3, and 5 wt% filler loading. The MMM with the 3 wt% loading showed the best performance in terms of particle dispersion and gas separation performance. The three MMMs were refabricated in an alternating magnetic field, and the MMM with the 3 wt% loading presented the best performance. The results display an increment in selectivity by 100% and a decrement in CO2 permeability by 97% to an unmagnetized MMM for the 3 wt% loading. The degree of filler dispersion was quantified and measured using Area Disorder of Delaunay Triangulation mapped onto the filler on binarized MMM images. The results indicate that the magnetized MMM presents a greater degree of dispersion than the unmagnetized MMM.


Sign in / Sign up

Export Citation Format

Share Document