scholarly journals Natural Convection in Tilted Rectangular Cavity subjected to TA

2021 ◽  
Vol 297 ◽  
pp. 01001
Author(s):  
Djamila Benyoucef ◽  
Mostefa Zeroual ◽  
Hocine Ben Moussa

The present study investigates the spectral analysis for natural convection in a tilted rectangular cavity, lled with high Prandtl oil ”Pr =880” by the code CFD. A constant vertical temperature gradient has been performed by subjecting the horizontal walls to constant temperatures Th and Tc; respectively. Other walls are adiabatic except the left small sidewall is differentially heating with temperature TA creating the horizontal temperature gradient. The results are presented for different values of lateral heating and inclination angle. The spectral analysis is used to identify and show effects on the original oscillation of the natural convection by the various investigated parameters (TA and θ).

An investigation is made of the forced liquid motion in a rotating cylindrical vessel with a horizontal base when a temperature difference exists between the outer and inner cylindrical boundaries of the liquid. It has been observed experimentally that at critical values of a certain non-dimensional parameter, known as the Rossby number, the flow patterns change abruptly in character. The present investigation derives a stability criterion which agrees qualitatively with the experimental results and also gives reasonable quantitative results. In the derivation of this result it is shown that there exists a relation between the mean vertical temperature gradient, the mean horizontal temperature gradient and the angular velocity of rotation of the system.


2013 ◽  
Vol 34 (1) ◽  
pp. 71-83
Author(s):  
Rafał Wyczółkowski ◽  
Dorota Musiał

Abstract The reason for undertaking this study was to determine the possible involvement of natural convection in the global heat transfer, that occurs in the heated steel rods bed. This problem is related to the setting of the effective thermal conductivity of the bars bed. This value is one of the boundary conditions for heating modeling of steel rods bundles during heat treatment. The aim of this study was to determine for which geometry of the bed bars, there will be no free convection. To analyze the problem the Rayleigh criterion was used. It was assumed that for the value of the number Ra < 1700 convection in the bed bars does not occur. For analysis, the results of measurements of the temperature distribution in the unidirectionally heated beds of bars were used. It has been shown, that for obtained, during the test, differences of temperature between the surfaces of adjacent rods, convection can occur only when the diameter of the rod exceeds 18 mm.


2006 ◽  
Vol 9 (05) ◽  
pp. 530-542 ◽  
Author(s):  
Hadi Nasrabadi ◽  
Kassem Ghorayeb ◽  
Abbas Firoozabadi

Summary We present formulation and numerical solution of two-phase multicomponent diffusion and natural convection in porous media. Thermal diffusion, pressure diffusion, and molecular diffusion are included in the diffusion expression from thermodynamics of irreversible processes. The formulation and the numerical solution are used to perform initialization in a 2D cross section. We use both homogeneous and layered media without and with anisotropy in our calculations. Numerical examples for a binary mixture of C1/C3 and a multicomponent reservoir fluid are presented. Results show a strong effect of natural convection in species distribution. Results also show that there are at least two main rotating cells at steady state: one in the gas cap, and one in the oil column. Introduction Proper initialization is an important aspect of reliable reservoir simulations. The use of the Gibbs segregation condition generally cannot provide reliable initialization in hydrocarbon reservoirs. This is caused, in part, by the effect of thermal diffusion (caused by the geothermal temperature gradient), which cannot be neglected in some cases; thermal diffusion might be the main phenomenon affecting compositional variation in hydrocarbon reservoirs, especially for near-critical gas/condensate reservoirs (Ghorayeb et al. 2003). Generally, temperature increases with increasing burial depth because heat flows from the Earth's interior toward the surface. The temperature profile, or geothermal gradient, is related to the thermal conductivity of a body of rock and the heat flux. Thermal conductivity is not necessarily uniform because it depends on the mineralogical composition of the rock, the porosity, and the presence of water or gas. Therefore, differences in thermal conductivity between adjacent lithologies can result in a horizontal temperature gradient. Horizontal temperature gradients in some offshore fields can be observed because of a constant water temperature (approximately 4°C) in different depths in the seabed floor. The horizontal temperature gradient causes natural convection that might have a significant effect on species distribution (Firoozabadi 1999). The combined effects of diffusion (pressure, thermal, and molecular) and natural convection on compositional variation in multicomponent mixtures in porous media have been investigated for single-phase systems (Riley and Firoozabadi 1998; Ghorayeb and Firoozabadi 2000a).The results from these references show the importance of natural convection, which, in some cases, overrides diffusion and results in a uniform composition. Natural convection also can result in increased horizontal compositional variation, an effect similar to that in a thermogravitational column (Ghorayeb and Firoozabadi 2001; Nasrabadi et al. 2006). The combined effect of convection and diffusion on species separation has been the subject of many experimental studies. Separation in a thermogravitational column with both effects has been measured widely (Schott 1973; Costeseque 1982; El Mataaoui 1986). The thermogravitational column consists of two isothermal vertical plates with different temperatures separated by a narrow space. The space can be either without a porous medium or filled with a porous medium. The thermal diffusion, in a binary mixture, causes one component to segregate to the hot plate and the other to the cold plate. Because of the density gradient caused by temperature and concentration gradients, convection flow occurs and creates a concentration difference between the top and bottom of the column. Analytical and numerical models have been presented to analyze the experimental results (Lorenz and Emery 1959; Jamet et al. 1992; Nasrabadi et al. 2006). The experimental and theoretical studies show that the composition difference between the top and bottom of the column increases with permeability until an optimum permeability is reached. Then, the composition difference declines as permeability increases. The process in a thermogravitational column shows the significance of the convection from a horizontal temperature gradient.


1978 ◽  
Vol 35 (11) ◽  
pp. 1430-1433 ◽  
Author(s):  
Wen-Hwa Kwain ◽  
Robert W. McCauley

During their first 12 mo of life rainbow trout, Salmo gairdneri, preferred progressively cooler temperatures as they grew older; 19 °C was selected during the 1st mo and the selected temperature declined by intervals of 0.5 °C for each of the following months up to the 3rd mo. Fish swam higher in temperature gradients exposed to overhead illumination than in those in total darkness. This trend was reversed during the following 9 mo. These findings demonstrate the important role that age plays in the temperature preference of this species and the influence that overhead light may have on the distribution of fish in vertical gradients. Key words: preferred temperature, age, Salmo gairdneri, light gradients


Sign in / Sign up

Export Citation Format

Share Document