scholarly journals Analysis of the occurrence of natural convection in a bed of bars in vertical temperature gradient conditions

2013 ◽  
Vol 34 (1) ◽  
pp. 71-83
Author(s):  
Rafał Wyczółkowski ◽  
Dorota Musiał

Abstract The reason for undertaking this study was to determine the possible involvement of natural convection in the global heat transfer, that occurs in the heated steel rods bed. This problem is related to the setting of the effective thermal conductivity of the bars bed. This value is one of the boundary conditions for heating modeling of steel rods bundles during heat treatment. The aim of this study was to determine for which geometry of the bed bars, there will be no free convection. To analyze the problem the Rayleigh criterion was used. It was assumed that for the value of the number Ra < 1700 convection in the bed bars does not occur. For analysis, the results of measurements of the temperature distribution in the unidirectionally heated beds of bars were used. It has been shown, that for obtained, during the test, differences of temperature between the surfaces of adjacent rods, convection can occur only when the diameter of the rod exceeds 18 mm.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hailin Lu ◽  
Jing Hao ◽  
Jiwei Zhong ◽  
Yafei Wang ◽  
Hongyin Yang

In this study, based on the recorded meteorological data of the bridge site, a spatial-temporal temperature model of a 3-span steel box girder is developed through applying the thermal analysis software TAITHERM. Firstly, the rationality and dependability of the proposed spatial-temporal temperature model are adequately verified by means of implementing the comparison with the measurement data. Then the temperature distribution of the steel box girder is analyzed and discussed in detail. The analytical results show that the time of the bottom of pavement reaching the daily maximum temperature lags behind the top of pavement by 2 or 3 hours due to the thermal insulation effect of pavement, and the maximum vertical temperature gradient of the structure exceeds the existing standards. Moreover, with the help of the analytical model, a parametric study of comprehensively meteorological factors is also performed. The results of the sensitivity analysis indicate that solar radiation is the most significant factor affecting the maximum vertical temperature gradient of the steel box girder, followed by air temperature and wind speed. After that, with the representative values of the extreme meteorological parameters during 100-year return period in Wuhan City in China being considered as the thermal boundary conditions, the temperature distribution of the steel box girder is further studied for investigation purpose. The results demonstrate that the heat conduction process of the steel box girder has distinct “box-room effect,” and it is of great necessity to consider both the actual weather conditions at the bridge site and the “box-room effect” of steel box girder when calculating thermal behaviors of bridge structures. Finally, it is related that the particular method proposed in this paper possesses a satisfactory application prospect for temperature field analysis upon various types of bridges in different regions.


2021 ◽  
Vol 297 ◽  
pp. 01001
Author(s):  
Djamila Benyoucef ◽  
Mostefa Zeroual ◽  
Hocine Ben Moussa

The present study investigates the spectral analysis for natural convection in a tilted rectangular cavity, lled with high Prandtl oil ”Pr =880” by the code CFD. A constant vertical temperature gradient has been performed by subjecting the horizontal walls to constant temperatures Th and Tc; respectively. Other walls are adiabatic except the left small sidewall is differentially heating with temperature TA creating the horizontal temperature gradient. The results are presented for different values of lateral heating and inclination angle. The spectral analysis is used to identify and show effects on the original oscillation of the natural convection by the various investigated parameters (TA and θ).


1974 ◽  
Vol 31 (1) ◽  
pp. 100-103 ◽  
Author(s):  
C. I. Goddard ◽  
J. W. Lilley ◽  
J. S. Tait

Yearling lake trout (Salvelinus namaycush) were anesthetized with a 150 ppm solution of M.S. 222 for 2 min at 10 C. When tested in a vertical temperature gradient, their behavior was abnormal for 5 days following anesthetization. Initially, they remained at the bottom of the gradient tank, as much as 63% of the time, and when they did swim up into the gradient, their temperature selection was much less precise than that of control fish. The percentage of fish on the bottom declined daily, and on the 6th day their temperature distribution did not differ from that of controls.


Author(s):  
Heng Sun ◽  
David Ross

Purpose The MRT lattice Boltzmann simulation of natural convection in a confined environment is carried out. The flow and heat transfer during natural convection in a symmetrical annulus are studied. Design/methodology/approach The cavity is filled with TiO2-water nanofluid, and the thermal conductivity and dynamic viscosity of nanofluid are measured experimentally. The experimental data are utilized in the numerical simulations. The nanofluids are prepared at four different nanoparticle concentrations φ = 0, 0.1, 0.3 and 0.5. It is notable that the radial coordinate is used into the temperature distribution function. As a result, only one source term is required for the present lattice Boltzmann model. On the other hand, the macro cylindrical energy equation is exactly recovered using Chapman–Enskog analysis. Findings Influence of some main parameters including Rayleigh number in range of 103 to 106, solid volume fraction of nanofluid in range of 0 to 0.5 and four different aspect ratios on the the nanofluid flow (i.e. streamlines), heat transfer (i.e. temperature distribution and average Nusselt number) and entropy generation (i.e. total entropy generation and Bejan number) are presented, quantitatively and graphically. It is found that adding TiO2 nanoparticles to the base fluid has considerable positive effect on the heat transfer performance and entropy generation. In addition, the configuration of the annulus can be good controlling parameter on the heat transfer rate during natural convection. Originality/value The originality of this work is using of a modern numerical method to simulate the free convection and conducting experimental observations to calculate the thermo-physical properties of nanofluid. In addition, the numerical and experimental works are combined to provide accurate results.


1980 ◽  
Vol 102 (4) ◽  
pp. 636-639 ◽  
Author(s):  
J. R. Parsons ◽  
J. C. Mulligan

A study of the onset of transient natural convection from a suddenly heated, horizontal cylinder of finite diameter is presented. The termination of the initial conductive and “locally” conuectiue heat transfer regime which precedes the onset of global natural convection is treated as a thermal stability phenomenon. An analysis is presented wherein the effects of finite cylinder diameter, cylinder heat capacity, and cylinder thermal conductivity are included in calculations of the convective delay time. A simple experimental apparatus is described and data presented. The thermal stability analysis is confirmed experimentally and data is presented which indicates localized natural convection prior to global motion.


2017 ◽  
Vol 17 (4) ◽  
pp. 13-18
Author(s):  
A. Bajwoluk ◽  
P. Gutowski

Abstract The results of research on the effect of the type of cooling agent used during heat treatment and thermal-chemical treatment on the formation of temperature gradient and stress-deformation distribution in cast pallets, which are part of furnace accessories used in this treatment, are disclosed. During operation, pallets are exposed to the effect of the same conditions as the charge they are carrying. Cyclic thermal loads are the main cause of excessive deformations or cracks, which after some time of the cast pallet operation result in its withdrawal due to damage. One of the major causes of this damage are stresses formed under the effect of temperature gradient in the unevenly cooled pallet construction. Studies focused on the analysis of heat flow in a charge-loaded pallet, cooled by various cooling agents characterized by different heat transfer coefficients and temperature. Based on the obtained temperature distribution, the stress distribution and the resulting deformation were examined. The results enabled drawing relevant conclusions about the effect of cooling conditions on stresses formed in the direction of the largest temperature gradient.


2006 ◽  
Vol 9 (05) ◽  
pp. 530-542 ◽  
Author(s):  
Hadi Nasrabadi ◽  
Kassem Ghorayeb ◽  
Abbas Firoozabadi

Summary We present formulation and numerical solution of two-phase multicomponent diffusion and natural convection in porous media. Thermal diffusion, pressure diffusion, and molecular diffusion are included in the diffusion expression from thermodynamics of irreversible processes. The formulation and the numerical solution are used to perform initialization in a 2D cross section. We use both homogeneous and layered media without and with anisotropy in our calculations. Numerical examples for a binary mixture of C1/C3 and a multicomponent reservoir fluid are presented. Results show a strong effect of natural convection in species distribution. Results also show that there are at least two main rotating cells at steady state: one in the gas cap, and one in the oil column. Introduction Proper initialization is an important aspect of reliable reservoir simulations. The use of the Gibbs segregation condition generally cannot provide reliable initialization in hydrocarbon reservoirs. This is caused, in part, by the effect of thermal diffusion (caused by the geothermal temperature gradient), which cannot be neglected in some cases; thermal diffusion might be the main phenomenon affecting compositional variation in hydrocarbon reservoirs, especially for near-critical gas/condensate reservoirs (Ghorayeb et al. 2003). Generally, temperature increases with increasing burial depth because heat flows from the Earth's interior toward the surface. The temperature profile, or geothermal gradient, is related to the thermal conductivity of a body of rock and the heat flux. Thermal conductivity is not necessarily uniform because it depends on the mineralogical composition of the rock, the porosity, and the presence of water or gas. Therefore, differences in thermal conductivity between adjacent lithologies can result in a horizontal temperature gradient. Horizontal temperature gradients in some offshore fields can be observed because of a constant water temperature (approximately 4°C) in different depths in the seabed floor. The horizontal temperature gradient causes natural convection that might have a significant effect on species distribution (Firoozabadi 1999). The combined effects of diffusion (pressure, thermal, and molecular) and natural convection on compositional variation in multicomponent mixtures in porous media have been investigated for single-phase systems (Riley and Firoozabadi 1998; Ghorayeb and Firoozabadi 2000a).The results from these references show the importance of natural convection, which, in some cases, overrides diffusion and results in a uniform composition. Natural convection also can result in increased horizontal compositional variation, an effect similar to that in a thermogravitational column (Ghorayeb and Firoozabadi 2001; Nasrabadi et al. 2006). The combined effect of convection and diffusion on species separation has been the subject of many experimental studies. Separation in a thermogravitational column with both effects has been measured widely (Schott 1973; Costeseque 1982; El Mataaoui 1986). The thermogravitational column consists of two isothermal vertical plates with different temperatures separated by a narrow space. The space can be either without a porous medium or filled with a porous medium. The thermal diffusion, in a binary mixture, causes one component to segregate to the hot plate and the other to the cold plate. Because of the density gradient caused by temperature and concentration gradients, convection flow occurs and creates a concentration difference between the top and bottom of the column. Analytical and numerical models have been presented to analyze the experimental results (Lorenz and Emery 1959; Jamet et al. 1992; Nasrabadi et al. 2006). The experimental and theoretical studies show that the composition difference between the top and bottom of the column increases with permeability until an optimum permeability is reached. Then, the composition difference declines as permeability increases. The process in a thermogravitational column shows the significance of the convection from a horizontal temperature gradient.


Author(s):  
Hossein Shokouhmand ◽  
Manoochehr Bozorgmehrian

Pressure vessels are common equipment in oil, gas and petrochemical industries. In a hot containing fluid vessel, excessive temperature gradient at junction of skirt to head (weld line), can cause unpredicted high thermal stresses; Thereby fracture of the vessel may occur as a result of cyclic operation. Providing a hot box (air pocket) in crotch space is a economical, applicable and easy mounted method in order to reduce the intensity of thermal stresses. Natural convection due to temperature difference between the wall of pocket, will absorb heat near the hot wall (head of the vessel) and release that near the cold wall (skirt of the vessel), then the skirt wall conducts heat to the earth as a fin. This conjugated heat transfer removes the temperature gradient boundary at welded junction. This phenomena will lead the temperature gradient on the weld line from a sudden to smooth behavior, thereby the skirt-head junction, that is a critical region, could be protected from excessive thermal stresses. In this paper the profit of hot box and conjugated heat transfer in cavity has been demonstrated experimentally. As a result it is shown that the conductive heat transfer through the skirt (which acts as a fin) ensures the continuation of natural convection in the box. Also the governing equations has been solved numerically and compared with experimental results.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Jia Wang ◽  
Fabian Nitschke ◽  
Maziar Gholami Korzani ◽  
Thomas Kohl

Abstract Temperature logs have important applications in the geothermal industry such as the estimation of the static formation temperature (SFT) and the characterization of fluid loss from a borehole. However, the temperature distribution of the wellbore relies on various factors such as wellbore flow conditions, fluid losses, well layout, heat transfer mechanics within the fluid as well as between the wellbore and the surrounding rock formation, etc. In this context, the numerical approach presented in this paper is applied to investigate the influencing parameters/uncertainties in the interpretation of borehole logging data. To this end, synthetic temperature logs representing different well operation conditions were numerically generated using our newly developed wellbore simulator. Our models account for several complex operation scenarios resulting from the requirements of high-enthalpy wells where different flow conditions, such as mud injection with- and without fluid loss and shut-in, occur in the drill string and the annulus. The simulation results reveal that free convective heat transfer plays an important role in the earlier evolution of the shut-in-time temperature; high accuracy SFT estimation is only possible when long-term shut-in measurements are used. Two other simulation scenarios for a well under injection conditions show that applying simple temperature correction methods on the non-shut-in temperature data could lead to large errors for SFT estimation even at very low injection flow rates. Furthermore, the magnitude of the temperature gradient increase depends on the flow rate, the percentage of fluid loss and the lateral heat transfer between the fluid and the rock formation. As indicated by this study, under low fluid losses (< 30%) or relatively higher flow rates (> 20 L/s), the impact of flow rate and the lateral heat transfer on the temperature gradient increase can be ignored. These results provide insights on the key factors influencing the well temperature distribution, which are important for the choice of the drilling data to estimate SFT and the design of the inverse modeling scheme in future studies to determine an accurate SFT profile for the high-enthalpy geothermal environment.


Sign in / Sign up

Export Citation Format

Share Document