temperature preference
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 31)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Sachiko Sasajima ◽  
Masaki Kondo ◽  
Tomoyo Ujisawa ◽  
Mikio Motegi ◽  
Tomohide Hayami ◽  
...  

Abstract Diabetic peripheral neuropathy (DPN) includes symptoms of thermosensory impairment, which are reported to involve changes in the expression or function, or both, of nociceptive TRPV1 and TRPA1 channels in rodents. In the present study, we did not find changes in the expression or function of TRPV1 or TRPA1 in DPN mice, although thermal hypoalgesia was observed in a murine model of DPN or TRPV1–/– mice with a plantar test, which specifically detects temperature avoidance. With a Thermal Gradient Ring in which mice can move freely in a temperature gradient, temperature preference can be analyzed, and we clearly discriminated the temperature-dependent phenotype between DPN and TRPV1–/– mice. Accordingly, we propose approaches with multiple behavioral methods to analyze the progression of DPN by response to thermal stimuli. Attention to both thermal avoidance and preference may provide insight into the symptoms of DPN.


Author(s):  
Lindsey A Robbins ◽  
Angela R Green-Miller ◽  
Donald C Lay Jr ◽  
Allan P Schinckel ◽  
Jay S Johnson ◽  
...  

Abstract The metabolic heat production of modern pigs has increased by an average of 16%, compared to sows of thirty years ago. Therefore, it is likely that temperature recommendations require updating to meet the needs of modern pigs. The objective of this study was to evaluate whether different reproductive stages of sows altered thermal preference and if current recommendations required updating. Twenty multi-parous sows (3.4 ± 1.2 parity) in different reproductive stages (non-pregnant: n=7; mid-gestation: 58.5 ± 5.68 d, n=6; and late-gestation: 104.7 ± 2.8 d, n=7) were tested. Thermal preference was individually tested and sows could freely choose a temperature, using a thermal gradient between 10.4 to 30.5°C. Sows were given 24 h to acclimate to the thermal apparatus. Before testing began, sows were given daily feed allotment and returned to the apparatus. Video from the 24 h test period was used to record sow behavior (time spent inactive), posture (upright, sternal and lateral lying), and location using instantaneous scan samples every 15 min. Data were analyzed using PROC MIXED in SAS 9.4. A cubic regression model was used to calculate the sow’s most preferred temperature based on the location, or temperature, in which they spent the most time. The preference range was calculated using peak temperature preference ±SE for each sow. The reproductive stage altered where sows spent their time within the thermal gradient (P < 0.01). Late-gestation sows preferred cooler temperatures (14.0°C) than mid-gestation (14.8°C; P < 0.01) and non-pregnant sows (14.8°C; P < 0.01). In summary, sow thermal preferences were within the lower half of the current recommended range (10 to 25°C). This indicates that temperatures at the higher end of the recommended range could be uncomfortable to sows and that the thermal comfort zone of sows may be narrower than recommendations indicate.


Author(s):  
Adam Alexander Harman ◽  
Meghan Fuzzen ◽  
Lisa Stoa ◽  
Douglas Boreham ◽  
Richard Manzon ◽  
...  

Characterizing the thermal preference of fish is important in conservation, environmental and evolutionary physiology and can be determined using a shuttle box system. Initial tank acclimation and trial lengths are important considerations in experimental design, yet systematic studies of these factors are missing. Three different behavioral assay experimental designs were tested to determine the effect of tank acclimation and trial length (12:12, 0:12, 2:2; hours of tank acclimation: behavioral trial) on the temperature preference of juvenile lake whitefish (Coregonus clupeaformis), using a shuttle box. Average temperature preferences for the 12:12, 0:12, and 2:2 experimental designs were 16.10±1.07°C, 16.02±1.56°C, 16.12±1.59°C respectively, with no significant differences between experimental designs (p= 0.9337). Ultimately, length of acclimation time and trial length had no significant effect on thermal preference.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1447
Author(s):  
Lindsey A. Robbins ◽  
Angela R. Green-Miller ◽  
Jay S. Johnson ◽  
Brianna N. Gaskill

Housing pigs within their thermal comfort zone positively impacts productivity and performance. However, fundamental information on behavioral thermoregulatory responses of individual and group-housed pigs is meager. As a gregarious species, pigs prefer to be near one another, touching and often huddling. As pigs huddle together, they decrease their heat loss to the environment by decreasing exposed surface area and increasing mass. Additionally, pigs gain weight rapidly as they age. As an individual grows, their ability to withstand lower temperatures increases. We hypothesized that group size would alter pig thermal preference and that thermal preference would change based upon body weight. Thirty-six groups of pigs (n = 2 pigs/group) were tested in a factorial design based on group size (1, 2, or 4) and weight category (small: 5.20 ± 1.15 kg; medium: 8.79 ± 1.30 kg; and large: 13.95 ± 1.26 kg) in both sexes. Treatment groups were placed inside a chamber with a controlled thermal gradient (4.6 m × 0.9 m × 0.9 m; L × W × H) that ranged in temperature from 18 to 30 °C. Pigs habituated to the gradient for 24 h. The following 24 h testing period was continuously video recorded and each pig’s location during inactivity (~70% daily budget) within the thermal apparatus was recorded every 10 min via instantaneous scan sampling. Data were analyzed using a GLM and log10 + 0.001 transformed for normality. Tukey tests and Bonferroni-corrected custom tests were used for post hoc comparisons. Peak temperature preference was determined by the maximum amount of time spent at a specific temperature. Both group size (p = 0.001) and weight category (p < 0.001) influenced the thermal location choice of pigs. Individual pigs preferred 30.31 °C, which differed from a group of 2 (20.0 °C: p = 0.003) and 4 pigs (20.0 °C: p < 0.001). The peak temperature preference of the small pigs (30.2 °C) differed from the large pigs (20.0 °C: p < 0.001) but did not differ from the medium-sized pigs (28.4 °C: p > 0.05). Overall, heavier pigs and larger groups preferred cooler temperatures.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009499
Author(s):  
Jordan J. Tyrrell ◽  
Jackson T. Wilbourne ◽  
Alisa A. Omelchenko ◽  
Jin Yoon ◽  
Lina Ni

Temperature sensation guides animals to avoid temperature extremes and to seek their optimal temperatures. The larval stage of Drosophila development has a dramatic effect on temperature preference. While early-stage Drosophila larvae pursue a warm temperature, late-stage larvae seek a significantly lower temperature. Previous studies suggest that this transition depends on multiple rhodopsins at the late larval stage. Here, we show that early-stage larvae, in which dorsal organ cool cells (DOCCs) are functionally blocked, exhibit similar cool preference to that of wild type late-stage larvae. The molecular thermoreceptors in DOCCs are formed by three members of the Ionotropic Receptor (IR) family, IR21a, IR93a, and IR25a. Early-stage larvae of each Ir mutant pursue a cool temperature, similar to that of wild type late-stage larvae. At the late larval stage, DOCCs express decreased IR proteins and exhibit reduced cool responses. Importantly, late-stage larvae that overexpress IR21a, IR93a, and IR25a in DOCCs exhibit similar warm preference to that of wild type early-stage larvae. These data suggest that IR21a, IR93a, and IR25a in DOCCs navigate early-stage larvae to avoid cool temperatures and the reduction of these IR proteins in DOCCs results in animals remaining in cool regions during the late larval stage. Together with previous studies, we conclude that multiple temperature-sensing systems are regulated for the transition of temperature preference in fruit fly larvae.


2021 ◽  
Vol 55 (1) ◽  
Author(s):  
Danielle R. Kirsch ◽  
Shawna Fix ◽  
Jon M. Davenport ◽  
Kristen K. Cecala ◽  
Joshua R. Ennen

2021 ◽  
Vol 17 ◽  
pp. 174480692110009
Author(s):  
Jerry Li ◽  
Maham Zain ◽  
Robert P Bonin

Common approaches to studying mechanisms of chronic pain and sensory changes in pre-clinical animal models involve measurement of acute, reflexive withdrawal responses evoked by noxious stimuli. These methods typically do not capture more subtle changes in sensory processing nor report on the consequent behavioral changes. In addition, data collection and analysis protocols are often labour-intensive and require direct investigator interactions, potentially introducing bias. In this study, we develop and characterize a low-cost, easily assembled behavioral assay that yields self-reported temperature preference from mice that is responsive to peripheral sensitization. This system uses a partially automated and freely available analysis pipeline to streamline the data collection process and enable objective analysis. We found that after intraplantar administration of the TrpV1 agonist, capsaicin, mice preferred to stay in cooler temperatures than saline injected mice. We further observed that gabapentin, a non-opioid analgesic commonly prescribed to treat chronic pain, reversed this aversion to higher temperatures. In contrast, optogenetic activation of the central terminals of TrpV1+ primary afferents via in vivo spinal light delivery did not induce a similar change in thermal preference, indicating a possible role for peripheral nociceptor activity in the modulation of temperature preference. We conclude that this easily produced and robust sensory assay provides an alternative approach to investigate the contribution of central and peripheral mechanisms of sensory processing that does not rely on reflexive responses evoked by noxious stimuli.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Michael T. J. Hague ◽  
Chelsey N. Caldwell ◽  
Brandon S. Cooper

ABSTRACT Heritable symbionts can modify a range of ecologically important host traits, including behavior. About half of all insect species are infected with maternally transmitted Wolbachia, a bacterial endosymbiont known to alter host reproduction, nutrient acquisition, and virus susceptibility. Here, we broadly test the hypothesis that Wolbachia modifies host behavior by assessing the effects of eight different Wolbachia strains on the temperature preference of six Drosophila melanogaster subgroup species. Four of the seven host genotypes infected with A-group Wolbachia strains (wRi in Drosophila simulans, wHa in D. simulans, wSh in Drosophila sechellia, and wTei in Drosophila teissieri) prefer significantly cooler temperatures relative to uninfected genotypes. Contrastingly, when infected with divergent B-group wMau, Drosophila mauritiana prefers a warmer temperature. For most strains, changes to host temperature preference do not alter Wolbachia titer. However, males infected with wSh and wTei tend to experience an increase in titer when shifted to a cooler temperature for 24 h, suggesting that Wolbachia-induced changes to host behavior may promote bacterial replication. Our results indicate that Wolbachia modifications to host temperature preference are likely widespread, which has important implications for insect thermoregulation and physiology. Understanding the fitness consequences of these Wolbachia effects is crucial for predicting evolutionary outcomes of host-symbiont interactions, including how Wolbachia spreads to become common. IMPORTANCE Microbes infect a diversity of species, influencing the performance and fitness of their hosts. Maternally transmitted Wolbachia bacteria infect most insects and other arthropods, making these bacteria some of the most common endosymbionts in nature. Despite their global prevalence, it remains mostly unknown how Wolbachia influence host physiology and behavior to proliferate. We demonstrate pervasive effects of Wolbachia on Drosophila temperature preference. Most hosts infected with A-group Wolbachia prefer cooler temperatures, whereas the one host species infected with divergent B-group Wolbachia prefers warmer temperatures, relative to uninfected genotypes. Changes to host temperature preference generally do not alter Wolbachia abundance in host tissues, but for some A-group strains, adult males have increased Wolbachia titer when shifted to a cooler temperature. This suggests that Wolbachia-induced changes to host behavior may promote bacterial replication. Our results help elucidate the impact of endosymbionts on their hosts amid the global Wolbachia pandemic.


2020 ◽  
Author(s):  
Jerry Li ◽  
Maham Zain ◽  
Robert P. Bonin

AbstractCommon approaches to studying chronic pain in pre-clinical animal models paradoxically involve measuring reflexive withdrawal responses that are more indicative of acute nociceptive pain. These methods typically do not capture the ongoing nature of chronic pain nor report on behavioral changes associated with pain. In addition, data collection and analysis protocols are often labour-intensive and require direct investigator interactions, potentially introducing bias. In this study, we develop and characterize a low-cost, easily assembled behavioral assay that yields self-reported temperature preference from mice which is sensitive to peripheral sensitization protocols. This system uses a partially automated and freely available analysis pipeline to streamline the data collection process and enable objective analysis. We found that after intraplantar administration of the TrpV1 agonist, capsaicin, mice preferred to stay in cooler temperatures than control injected mice. We further observed that gabapentin, a non-opioid analgesic commonly prescribed to treat chronic pain, reversed this aversion to higher temperatures. We further observed that optogenetic activation of the central terminals of TrpV1+ primary afferents via in vivo spinal light delivery did not induce a similar change in thermal preference, indicating a role for peripheral nociceptor activity in the modulation of temperature preference. We conclude that this easily produced and robust sensory assay provides an alternative approach to investigate the contribution of central and peripheral mechanisms to pathological sensory processing that does not rely on reflexive responses evoked by noxious stimuli.


Sign in / Sign up

Export Citation Format

Share Document