scholarly journals A Numerical Analysis on the Behavior of Single Battered Pile under Pullout Loading

2021 ◽  
Vol 318 ◽  
pp. 01010
Author(s):  
Mais S. Al-Tememy ◽  
Mohammed A. Al-Neami ◽  
Mohammed F. Asswad

Batter or raker piles are piles driven at an inclination with a vertical to resist large inclined or lateral forces. Many structures like offshore structures and towers are subjected to overturning moments due to wave pressure, wind load, and ship impacts. Therefore in such structures, a combination of the vertical and batter piles is used to transfer overturning moments in compression and tension forces to the foundation. This paper presents a three-dimensional finite element analysis using PLAXIS 3D software to study the battered pile's behavior under the effect of pullout load. Several variables that influence the pile tension capacity embedded in sandy soil are investigated. The pile models are steel piles embedded in the dense sand at different batter angles (0, 10, 20, and 30) degrees with two embedment ratios, L/d (15 and 20). To clarify the pile shape's influence on a pullout capacity, two shapes are used, a circular pile with a diameter equal to 20 mm and a square pile with a section of 15.7×15.7 mm. These dimensions are chosen to achieve an equal perimeter for both shapes. The numerical results pointed that the pile pullout capacity increases with the increasing of the batter angle and embedment ratio, and the maximum values are marked at a batter angle of 20o. The shape of the bending moment profile is a single curvature, and the peak values are located approximately at the midpoint of the battered pile, while a zero value is located at the pile tip and pile head.

Author(s):  
Tomohiro Takaki ◽  
Toshimichi Fukuoka

The most important factor for the leakage problem of pipe flange connections is considered to be contact pressure distribution at the gasket bearing surface in service. In this study, the mechanical behaviors of the pipe flange connection are evaluated using FEM as a three-dimensional contact problem, in which a gasket is modeled as a nonlinear one-dimensional gasket element. Here, the contact pressure distributions at the gasket bearing surface and the variations of the bolt stress are estimated under uniform bolt preloads or nonuniform ones due to the elastic interaction during bolting up. The numerical procedure proposed here can successively deal with the processes of bolt-up, applying inner pressure and applying bending moment. The analytical objects are pipe flanges specified in JIS B 2238 with compressed asbestos sheet gaskets being inserted. The validity of the numerical method is ascertained by experiment.


Author(s):  
Koichi Okayama ◽  
Toshimichi Fukuoka

A reamer bolt is commonly used when clamping a rigid shaft coupling subjected to large shear force. Although some joint design procedures assume that the applied shear force transmits only through the reamer surface, it is also supported by the friction force on the contact surfaces. Accordingly, to design the coupling clamped by reamer bolts, it is important to evaluate the ratio of the shear forces supported by the reamer surface and the friction force, which is defined as shear force transfer ratio (SFTR) here. In this study, distributions of SFTR and the bending stresses along the reamer surface are analyzed by three-dimensional FEM, focusing on the effects of the fit between the reamer bolt and bolt hole, the scatter of initial bolt stress and the misalignment of the connecting shafts. Numerical results quantitatively clarify how the amounts of the SFTR and the bending stresses as the friction coefficients, the fit and the magnitude of misalignment are changed. As for an offset misalignment, it is found that its effect on the bending moment generated in the shaft body is negligibly small, if the offset between two shafts in radial direction is less than 10mm which is 1% of the total shaft length.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Aida Achour ◽  
Abdulmohsen Albedah ◽  
Faycal Benyahia ◽  
Bel Abbes Bachir Bouiadjra ◽  
Djamel Ouinas

Composite materials have been used to structurally repair piping and other facilities for many years. However, the original use of composite materials was for repairing corroded pipelines where the intent was to restore strength to the damaged section of the pipeline. In addition to repairing corrosion, composite materials have successfully been used to repair dents, wrinkle bends, induction bends, and pipe fittings including elbows and tees as well as repair of offshore risers. In this study, the behavior of circumferential through cracks in repaired pipe with bonded composite wrap subjected to bending moment is investigated using three-dimensional finite-element analysis. The stress intensity factor (SIF) is utilized as a fracture criterion. The effects of the mechanical and geometrical properties of the adhesive on the variation of the SIF at the crack front were also analyzed. The obtained results show that the presence of the bonded composite repair significantly reduces the SIF, which can improve the residual lifespan of the pipe. Meanwhile, the SIF is also reduced as the elastic and the geometrical wrap properties are improved, particularly when the Young's modulus of the adhesive and the wrap thickness are increased.


Author(s):  
Tyler London ◽  
Simon D. Smith ◽  
Şefika Elvin Eren

This paper concerns the numerical simulation of elastic and elastic-plastic crack growth in welded components. Three-dimensional, spline-based, automatic crack re-meshing algorithms have been developed at TWI to simulate crack propagation using the commercial finite element analysis software ABAQUS. These methods allow for fatigue crack growth simulations employing the Paris law, mean stress effects and more advanced elastic crack growth laws, and incorporate nodal release techniques or iterative stationary crack methods coupled with experimentally measured tearing resistance curves for elastic-plastic crack growth. The flexibility, stability and accuracy of these numerical methods are demonstrated through several examples. The application of the crack growth simulations to full-life engineering critical assessments (ECA) of offshore structures is also described and demonstrated.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document