The Sun-Earth Connection of Energetic Particles

2012 ◽  
Vol 55 ◽  
pp. 321-326 ◽  
Author(s):  
K.-L. Klein ◽  
S. Masson ◽  
R. Miteva ◽  
S. Samwel ◽  
O. Malandraki ◽  
...  
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuo Shiokawa ◽  
Katya Georgieva

AbstractThe Sun is a variable active-dynamo star, emitting radiation in all wavelengths and solar-wind plasma to the interplanetary space. The Earth is immersed in this radiation and solar wind, showing various responses in geospace and atmosphere. This Sun–Earth connection variates in time scales from milli-seconds to millennia and beyond. The solar activity, which has a ~11-year periodicity, is gradually declining in recent three solar cycles, suggesting a possibility of a grand minimum in near future. VarSITI—variability of the Sun and its terrestrial impact—was the 5-year program of the scientific committee on solar-terrestrial physics (SCOSTEP) in 2014–2018, focusing on this variability of the Sun and its consequences on the Earth. This paper reviews some background of SCOSTEP and its past programs, achievements of the 5-year VarSITI program, and remaining outstanding questions after VarSITI.


2013 ◽  
Author(s):  
R. A. Mewaldt ◽  
C. M. S. Cohen ◽  
G. M. Mason ◽  
T. T. von Rosenvinge ◽  
R. A. Leske ◽  
...  

2003 ◽  
Vol 21 (6) ◽  
pp. 1217-1228 ◽  
Author(s):  
R. B. McKibben ◽  
J. J. Connell ◽  
C. Lopate ◽  
M. Zhang ◽  
J. D. Anglin ◽  
...  

Abstract. In 2000–2001 Ulysses passed from the south to the north polar regions of the Sun in the inner heliosphere, providing a snapshot of the latitudinal structure of cosmic ray modulation and solar energetic particle populations during a period near solar maximum.  Observations from the COSPIN suite of energetic charged particle telescopes show that latitude variations in the cosmic ray intensity in the inner heliosphere are nearly non-existent near solar maximum, whereas small but clear latitude gradients were observed during the similar phase of Ulysses’ orbit near the 1994–95 solar minimum. At proton energies above ~10 MeV and extending up to >70 MeV, the intensities are often dominated by Solar Energetic Particles (SEPs) accelerated near the Sun in association with intense solar flares and large Coronal Mass Ejections (CMEs). At lower energies the particle intensities are almost constantly enhanced above background, most likely as a result of a mix of SEPs and particles accelerated by interplanetary shocks. Simultaneous high-latitude Ulysses and near-Earth observations show that most events that produce large flux increases near Earth also produce flux increases at Ulysses, even at the highest latitudes attained. Particle anisotropies during particle onsets at Ulysses are typically directed outwards from the Sun, suggesting either acceleration extending to high latitudes or efficient cross-field propagation somewhere inside the orbit of Ulysses. Both cosmic ray and SEP observations are consistent with highly efficient transport of energetic charged particles between the equatorial and polar regions and across the mean interplanetary magnetic fields in the inner heliosphere.Key words. Interplanetary physics (cosmic rays) – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections)


2020 ◽  
Author(s):  
Nathan Schwadron ◽  

<p>NASA’s Parker Solar Probe (PSP) mission recently plunged through the inner heliosphere to perihelia at ~24 million km (~35 solar radii), much closer to the Sun than any prior human made object. Onboard PSP, the Integrated Science Investigation of the Sun (ISʘIS) instrument suite made groundbreaking measurements of solar energetic particles (SEPs). Here we discuss the near-Sun energetic particle radiation environment over PSP’s first two orbits, which reveal where and how energetic particles are energized and transported. We find a great variety of energetic particle events accelerated both locally and remotely. These include co-rotating interaction regions (CIRs), “impulsive” SEP events driven by acceleration near the Sun, and events related to Coronal Mass Ejections (CMEs). These ISʘIS observations made so close to the Sun provide critical information for investigating the near-Sun transport and energization of solar energetic particles that was difficult to resolve from prior observations. We discuss the physics of particle acceleration and transport in the context of various theories and models that have been developed over the past decades. This study marks a major milestone with humanity’s reconnaissance of the near-Sun environment and provides the first direct observations of the energetic particle radiation environment in the region just above the corona.</p>


2012 ◽  
Vol 53 (4) ◽  
pp. 4.21-4.24 ◽  
Author(s):  
Steve Milan ◽  
Malcolm Dunlop ◽  
Andrew Fazakerley ◽  
Benoit Hubert ◽  
Benoit Lavraud ◽  
...  
Keyword(s):  
The Sun ◽  

2007 ◽  
Author(s):  
M. V. Alves ◽  
E. Echer ◽  
W. G. Gonzalez ◽  
L. A. Balmaceda ◽  
F. L. Guarnieri

Sign in / Sign up

Export Citation Format

Share Document