scholarly journals Wind turbines using self-excited three-phase induction generators: an innovative solution for voltage-frequency control

2008 ◽  
Vol 43 (2) ◽  
pp. 173-187 ◽  
Author(s):  
J. F. Brudny ◽  
R. Pusca ◽  
H. Roisse
2021 ◽  
Vol 16 ◽  
pp. 8-21
Author(s):  
Essamudin Ali Ebrahim ◽  
Abuelmaaty M. Ali

Nowadays, induction motor (IM) can be used in tracking systems to follow a predefined path like in robotics and servos. The modified nanogrid is a small scalable-renewable energy intermittent source that powers loads via a single-stage inverter (SSI). Higher utilization of the inverter dc-link voltage improves its output voltage and dependently, the performance of the motor tracking speed. So, this paper proposed a switched boost inverter (SBI) to feed IM from PV-source to boost its dc-link output voltage. The usage SBI utilizes minimum passive components, more active elements, introduces shot-through mode as z-source inverter and produces both ac and dc voltages simultaneously. The performance of the motor-tracking speed depends directly on the motorstator voltage. So, the proposed method depends mainly on two parameters to verify the pre-defined trajectory speed. The first proposed intention is a simple algorithm for a closed-loop dc-link boosting control based-on the reference model to compute the optimum duty ratio (D). The second one depends mainly on the modulation index (M) to produce the reference signals needed to adjust the speed of the motor through a (voltage/frequency) control of a predefined value. The modelling and validation of the proposed system was implicit with the help of Matlab/ Simulink package. The robustness of the system has been tested by selecting several speed trajectories and was able to track them. Furthermore, SBI-based system was compared with other VSI-inverter techniques such as the space-vector PWM single- and two-stage VSI inverters. Test results explored that the SBI-based system is a strong competitor to other inverter techniques especially at low-voltage intermittent supply.


Author(s):  
Zhengwang Xu ◽  
Guozhuang Jiang ◽  
Ke Kun ◽  
Yuchun Yi

Background: The output voltage frequency for the previously proposed "phase hopping" AC-AC frequency conversion technology is determined by the law that the number of output voltage cycles is reduced by one relative to the power frequency in a large cycle containing six jumps. According to the law, only a limited number of output frequencies, such as 37.5 Hz, 42.86 Hz and 45 Hz are found. Due to the large spacing between the output frequencies, the "phase hopping" frequency conversion technology is difficult to put into practical use. Methods: In this paper, the law of the output frequency control is generalized so that the number of output cycles in a large cycle is reduced by n relative to the power frequency. The analysis shows that the appropriate selection of large cycles, including the number of power frequency cycles and the value of n, can find more frequencies to be used. Reducing the interval between the output frequencies within 1Hz. Results: The analysis results were verified in simulation by MATLAB, and the harmonics and the feasibility of the actual application were analyzed. Conclusion: Finally, an experimental platform was built and an experimental analysis was carried out. The experimental results show that the theoretical and simulation analyses are correct.


2004 ◽  
Vol 32 (5) ◽  
pp. 248-259 ◽  
Author(s):  
Qiang Wu ◽  
Philo Juang ◽  
Margaret Martonosi ◽  
Douglas W. Clark

Sign in / Sign up

Export Citation Format

Share Document