scholarly journals Old star clusters: Bench tests of low mass stellar models

2013 ◽  
Vol 43 ◽  
pp. 02002
Author(s):  
M. Salaris
1983 ◽  
Vol 6 ◽  
pp. 109-117 ◽  
Author(s):  
R.D. Cannon

In this review I shall concentrate mainly on globular star clusters in our Galaxy since these are the objects for which most work has been done recently, both observationally and theoretically. However, I shall also discuss briefly the oldest open clusters and clusters in the Magellanic Clouds. Little can be said about more distant cluster systems, since the only observations available are of integrated colours or spectra and these seem to be rather unreliable indicators of age. It is perhaps worth pointing out that the title may be slightly misleading; the problem is not so much to determine the ages of clusters of known abundances, as to obtain the best simultaneous solution for both age and composition, since some of the most important abundances (notably helium and oxygen) are virtually unobservable in little-evolved low mass stars.


2019 ◽  
Vol 14 (S351) ◽  
pp. 367-376
Author(s):  
Maureen van den Berg

AbstractThe features and make up of the population of X-ray sources in Galactic star clusters reflect the properties of the underlying stellar environment. Cluster age, mass, stellar encounter rate, binary frequency, metallicity, and maybe other properties as well, determine to what extent we can expect a contribution to the cluster X-ray emission from low-mass X-ray binaries, millisecond pulsars, cataclysmic variables, and magnetically active binaries. Sensitive X-ray observations withXMM-Newton and certainlyChandra have yielded new insights into the nature of individual sources and the effects of dynamical encounters. They have also provided a new perspective on the collective X-ray properties of clusters, in which the X-ray emissivities of globular clusters and old open clusters can be compared to each other and to those of other environments. I will review our current understanding of cluster X-ray sources, focusing on star clusters older than about 1 Gyr, illustrated with recent results.


1995 ◽  
Vol 10 ◽  
pp. 419-422
Author(s):  
J. Andersen

Stellar models are the means by which we describe and understand the distribution of stars in the HR diagram. A stellar model is, in principle, completely specified by the three fundamental parameters mass, chemical composition, and age. Comparing the properties of models and real stars with the same parameters will tell us if our recipe for constructing stellar models is realistic. Unfortunately, the only star for which all three are known independently of stellar models is the Sun. For stars of other masses and ages we must devise observational tests in which at least one fundamental parameter is unknown. Two such popular test objects are double-lined eclipsing binaries and star clusters.In suitable eclipsing binaries we can determine both masses and chemical composition; the absolute age is unknown, but the same for both stars. Since evolution depends most sensitively on the mass, eclipsing binaries provide a very direct test of the models, but only for two points on a single isochrone. In star clusters, neither ages nor individual masses are known, but the detailed shape and population of a well-observed cluster sequence in the HR diagram provide a number of additional probes into the models.


2019 ◽  
Vol 624 ◽  
pp. A137 ◽  
Author(s):  
L. Haemmerlé ◽  
P. Eggenberger ◽  
S. Ekström ◽  
C. Georgy ◽  
G. Meynet ◽  
...  

Grids of stellar models are useful tools to derive the properties of stellar clusters, in particular young clusters hosting massive stars, and to provide information on the star formation process in various mass ranges. Because of their short evolutionary timescale, massive stars end their life while their low-mass siblings are still on the pre-main sequence (pre-MS) phase. Thus the study of young clusters requires consistent consideration of all the phases of stellar evolution. But despite the large number of grids that are available in the literature, a grid accounting for the evolution from the pre-MS accretion phase to the post-MS phase in the whole stellar mass range is still lacking. We build a grid of stellar models at solar metallicity with masses from 0.8 M⊙ to 120 M⊙, including pre-MS phase with accretion. We use the GENEC code to run stellar models on this mass range. The accretion law is chosen to match the observations of pre-MS objects on the Hertzsprung-Russell diagram. We describe the evolutionary tracks and isochrones of our models. The grid is connected to previous MS and post-MS grids computed with the same numerical method and physical assumptions, which provides the widest grid in mass and age to date.


1984 ◽  
Vol 105 ◽  
pp. 123-138
Author(s):  
R.D. Cannon

This review will attempt to do two things: (i) discuss some of the data which are available for testing the theory of evolution of low mass stars, and (ii) point out some problem areas where observations and theory do not seem to agree very well. This is of course too vast a field of research to be covered in one brief review, so I shall concentrate on one particular aspect, namely the study of star clusters and especially their colour-magnitude (CM) diagrams. Star clusters provide large samples of stars at the same distance and with the same age, and the CM diagram gives the easiest way of comparing theoretical predictions with observations, although crucial evidence is also provided by spectroscopic abundance analyses and studies of variable stars. Since this is primarily a review of observational data it is natural to divide it into two parts: (i) galactic globular clusters, and (ii) old and intermediate-age open clusters. Some additional evidence comes from Local Group galaxies, especially now that CM diagrams which reach the old main sequence are becoming available. For each class of cluster I shall consider successive stages of evolution from the main sequence, up the hydrogen-burning red giant branch, and through the helium-burning giant phase.


1991 ◽  
Vol 148 ◽  
pp. 219-221
Author(s):  
A. Vallenari ◽  
C. Chiosi ◽  
G. Bertelli ◽  
G. Meylan ◽  
S. Ortolani

We present the photometry of two clusters NGC 2164 and NGC 1850 located in the Large Magellanic Cloud (LMC). The ages are determined taking into account the presence either of convective overshoot or of semiconvection in the stellar models. The experimental luminosity functions are compared with the theoretical models.


2019 ◽  
Vol 621 ◽  
pp. A103 ◽  
Author(s):  
J. Bialopetravičius ◽  
D. Narbutis ◽  
V. Vansevičius

Context. Convolutional neural networks (CNNs) have been proven to perform fast classification and detection on natural images and have the potential to infer astrophysical parameters on the exponentially increasing amount of sky-survey imaging data. The inference pipeline can be trained either from real human-annotated data or simulated mock observations. Until now, star cluster analysis was based on integral or individual resolved stellar photometry. This limits the amount of information that can be extracted from cluster images. Aims. We aim to develop a CNN-based algorithm capable of simultaneously deriving ages, masses, and sizes of star clusters directly from multi-band images. We also aim to demonstrate CNN capabilities on low-mass semi-resolved star clusters in a low-signal-to-noise-ratio regime. Methods. A CNN was constructed based on the deep residual network (ResNet) architecture and trained on simulated images of star clusters with various ages, masses, and sizes. To provide realistic backgrounds, M 31 star fields taken from The Panchromatic Hubble Andromeda Treasury (PHAT) survey were added to the mock cluster images. Results. The proposed CNN was verified on mock images of artificial clusters and has demonstrated high precision and no significant bias for clusters of ages ≲3 Gyr and masses between 250 and 4000 M⊙. The pipeline is end-to-end, starting from input images all the way to the inferred parameters; no hand-coded steps have to be performed: estimates of parameters are provided by the neural network in one inferential step from raw images.


2020 ◽  
Vol 498 (1) ◽  
pp. L15-L19
Author(s):  
Matthew I Swayne ◽  
Pierre F L Maxted ◽  
Vedad Kunovac Hodžić ◽  
Amaury H M J Triaud

ABSTRACT A 2014 study of the eclipsing binary star 1SWASPJ011351.29+314909.7 (J0113+31) reported an unexpectedly high effective temperature for the M-dwarf companion to the 0.95-M⊙ primary star. The effective temperature inferred from the secondary eclipse depth was ∼600 K higher than the value predicted from stellar models. Such an anomalous result questions our understanding of low-mass stars and might indicate a significant uncertainty when inferring properties of exoplanets orbiting them. We seek to measure the effective temperature of the M-dwarf companion using the light curve of J0113+31 recently observed by the Transiting Exoplanet Survey Satellite (TESS). We use the pycheops modelling software to fit a combined transit and eclipse model to the TESS light curve. To calculate the secondary effective temperature, we compare the best-fitting eclipse depth to the predicted eclipse depths from theoretical stellar models. We determined the effective temperature of the M dwarf to be Teff,2 = 3208 ± 43 K, assuming log g2 = 5, [Fe/H] = −0.4, and no alpha-element enhancement. Varying these assumptions changes Teff,2 by less than 100 K. These results do not support a large anomaly between observed and theoretical low-mass star temperatures.


Author(s):  
Søren S. Larsen

An overview of our current understanding of the formation and evolution of star clusters is given, with the main emphasis on high-mass clusters. Clusters form deeply embedded within dense clouds of molecular gas. Left-over gas is cleared within a few million years and, depending on the efficiency of star formation, the clusters may disperse almost immediately or remain gravitationally bound. Current evidence suggests that a small percentage of star formation occurs in clusters that remain bound, although it is not yet clear whether this fraction is truly universal. Internal two-body relaxation and external shocks will lead to further, gradual dissolution on time scales of up to a few hundred million years for low-mass open clusters in the Milky Way, while the most massive clusters (>10 5  M ⊙ ) have lifetimes comparable to or exceeding the age of the Universe. The low-mass end of the initial cluster mass function is well approximated by a power-law distribution, , but there is mounting evidence that quiescent spiral discs form relatively few clusters with masses M >2×10 5  M ⊙ . In starburst galaxies and old globular cluster systems, this limit appears to be higher, at least several ×10 6  M ⊙ . The difference is likely related to the higher gas densities and pressures in starburst galaxies, which allow denser, more massive giant molecular clouds to form. Low-mass clusters may thus trace star formation quite universally, while the more long-lived, massive clusters appear to form preferentially in the context of violent star formation.


Sign in / Sign up

Export Citation Format

Share Document