scholarly journals Application of Power Geometry and Normal Form Methods to the Study of Nonlinear ODEs

2018 ◽  
Vol 173 ◽  
pp. 01004 ◽  
Author(s):  
Victor Edneral

This paper describes power transformations of degenerate autonomous polynomial systems of ordinary differential equations which reduce such systems to a non-degenerative form. Example of creating exact first integrals of motion of some planar degenerate system in a closed form is given.

1972 ◽  
Vol 50 (17) ◽  
pp. 2037-2047 ◽  
Author(s):  
M. Razavy

From the equation of motion and the canonical commutation relation for the position of a particle and its conjugate momentum, different first integrals of motion can be constructed. In addition to the proper Hamiltonian, there are other operators that can be considered as the generators of motion for the position operator (q-equivalent Hamiltonians). All of these operators have the same classical limit for the probability density of the coordinate of the particle, and many of them are symmetric and self-adjoint operators or have self-adjoint extensions. However, they do not satisfy the Heisenberg rule of quantization, and lead to incorrect commutation relations for velocity and position operators. Therefore, it is concluded that the energy first integral and the potential, rather than the equation of motion and the force law, are the physically significant operators in quantum mechanics.


Author(s):  
Bashar K. Hammad ◽  
Ali H. Nayfeh ◽  
Eihab Abdel-Rahman

We present a reduced-order model and closed-form expressions describing the response of a micromechanical filter made up of two clamped-clamped microbeam capacitive resonators coupled by a weak microbeam. The model accounts for geometrical and electrical nonlinearities as well as the coupling between them. It is obtained by discretizing the distributed-parameter system using the Galerkin procedure. The basis functions are the linear undamped global mode shapes of the unactuated filter. Closed-form expressions for these mode shapes and the coressponding natural frequencies are obtained by formulating a boundary-value problem (BVP) that is composed of five equations and twenty boundary conditions. This problem is transformed into solving a system of twenty linear homogeneous algebraic equations for twenty constants and the natural frequencies. We predict the deflection and the voltage at which the static pull-in occurs by solving another boundary-value problem (BVP). We also solve an eigenvalue problem (EVP) to determine the two natural frequencies delineating the bandwidth of the actuated filter. Using the method of multiple scales, we determine four first-order nonlinear ODEs describing the amplitudes and phases of the modes. We found a good agreement between the results obtained using our model and the published experimental results. We found that the filter can be tuned to operate linearly for a wide range of input signal strengths by choosing a DC voltage that makes the effective nonlinearities vanish.


Author(s):  
Antonio Giorgilli

The problem of representing a class of maps in a form suited for application of normal form methods is revisited. It is shown that using the methods of Lie series and of Lie transform a normal form algorithm is constructed in a straightforward manner. The examples of the Schröder–Siegel map and of the Chirikov standard map are included, with extension to arbitrary dimension.


2007 ◽  
Vol 2007 ◽  
pp. 1-25
Author(s):  
M. P. Markakis

We establish an analytical method leading to a more general form of the exact solution of a nonlinear ODE of the second order due to Gambier. The treatment is based on the introduction and determination of a new function, by means of which the solution of the original equation is expressed. This treatment is applied to another nonlinear equation, subjected to the same general class as that of Gambier, by constructing step by step an appropriate analytical technique. The developed procedure yields a general exact closed form solution of this equation, valid for specific values of the parameters involved and containing two arbitrary (free) parameters evaluated by the relevant initial conditions. We finally verify this technique by applying it to two specific sets of parameter values of the equation under consideration.


Sign in / Sign up

Export Citation Format

Share Document