scholarly journals Bounded motion design in the Earth zonal problem using differential algebra based normal form methods

2020 ◽  
Vol 132 (2) ◽  
Author(s):  
A. Weisskopf ◽  
R. Armellin ◽  
M. Berz
Author(s):  
Antonio Giorgilli

The problem of representing a class of maps in a form suited for application of normal form methods is revisited. It is shown that using the methods of Lie series and of Lie transform a normal form algorithm is constructed in a straightforward manner. The examples of the Schröder–Siegel map and of the Chirikov standard map are included, with extension to arbitrary dimension.


2019 ◽  
Vol 34 (36) ◽  
pp. 1942011 ◽  
Author(s):  
Adrian Weisskopf ◽  
David Tarazona ◽  
Martin Berz

Nonlinear effects of the various electric field and magnetic field components of storage rings to confine the particles and bend their trajectory can cause substantial amplitude-dependent tune shifts within the beam. Furthermore, tune shifts are often sensitive to variations of system parameters, e.g. total particle momentum offsets [Formula: see text]. Such amplitude- and parameter-dependent tune shifts influence the dynamics and stability of a beam in particle storage rings. Thus, it is critical for high precision measurements to analyze and understand these influences. On this basis, we present normal form methods for the calculation of high order amplitude and system parameter dependencies of the horizontal and vertical tunes in storage rings using the differential algebra (DA) framework within COSY INFINITY. A storage ring is simulated using COSY INFINITY to generate a DA Poincaré return map describing the transverse phase space behavior after each revolution in the storage ring. The map is expanded around the parameter-dependent closed orbit of the system before transforming the resulting map into normal form coordinates to extract the high order tune dependencies on the phase space amplitude and variation in the system parameters. As a specific example, a storage ring similar to the Storage Ring of the Muon [Formula: see text]-2 Experiment at Fermilab (E989) is investigated.


2018 ◽  
Vol 173 ◽  
pp. 01004 ◽  
Author(s):  
Victor Edneral

This paper describes power transformations of degenerate autonomous polynomial systems of ordinary differential equations which reduce such systems to a non-degenerative form. Example of creating exact first integrals of motion of some planar degenerate system in a closed form is given.


1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


Sign in / Sign up

Export Citation Format

Share Document