scholarly journals Computational Algorithm for Covariant Series Expansions in General Relativity

2018 ◽  
Vol 173 ◽  
pp. 03021 ◽  
Author(s):  
Ivan Potashov ◽  
Alexander Tsirulev

We present a new algorithm for computing covariant power expansions of tensor fields in generalized Riemannian normal coordinates, introduced in some neighborhood of a parallelized k-dimensional submanifold (k = 0, 1, . . .< n; the case k = 0 corresponds to a point), by transforming the expansions to the corresponding Taylor series. For an arbitrary real analytic tensor field, the coefficients of such series are expressed in terms of its covariant derivatives and covariant derivatives of the curvature and the torsion. The algorithm computes the corresponding Taylor polynomials of arbitrary orders for the field components and is applicable to connections that are, in general, nonmetric and not torsion-free. We show that this computational problem belongs to the complexity class LEXP.

Author(s):  
Charles Fefferman ◽  
C. Robin Graham

A fundamental result in Riemannian geometry is the jet isomorphism theorem which asserts that at the origin in geodesic normal coordinates, the full Taylor expansion of the metric may be recovered from the iterated covariant derivatives of curvature. As a consequence, one deduces that any local invariant of Riemannian metrics has a universal expression in terms of the curvature tensor and its covariant derivatives. Geodesic normal coordinates are determined up to the orthogonal group, so problems involving local invariants are reduced to purely algebraic questions concerning invariants of the orthogonal group on tensors. This chapter proves an analogous jet isomorphism theorem for conformal geometry. By making conformal changes, the Taylor expansion of a metric in geodesic normal coordinates can be further simplified, resulting in a “conformal normal form” for metrics about a point.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Venkateswaran P. Krishnan ◽  
Vladimir A. Sharafutdinov

<p style='text-indent:20px;'>For an integer <inline-formula><tex-math id="M1">\begin{document}$ r\ge0 $\end{document}</tex-math></inline-formula>, we prove the <inline-formula><tex-math id="M2">\begin{document}$ r^{\mathrm{th}} $\end{document}</tex-math></inline-formula> order Reshetnyak formula for the ray transform of rank <inline-formula><tex-math id="M3">\begin{document}$ m $\end{document}</tex-math></inline-formula> symmetric tensor fields on <inline-formula><tex-math id="M4">\begin{document}$ {{\mathbb R}}^n $\end{document}</tex-math></inline-formula>. Roughly speaking, for a tensor field <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula>, the order <inline-formula><tex-math id="M6">\begin{document}$ r $\end{document}</tex-math></inline-formula> refers to <inline-formula><tex-math id="M7">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula>-integrability of higher order derivatives of the Fourier transform <inline-formula><tex-math id="M8">\begin{document}$ \widehat f $\end{document}</tex-math></inline-formula> over spheres centered at the origin. Certain differential operators <inline-formula><tex-math id="M9">\begin{document}$ A^{(m,r,l)}\ (0\le l\le r) $\end{document}</tex-math></inline-formula> on the sphere <inline-formula><tex-math id="M10">\begin{document}$ {{\mathbb S}}^{n-1} $\end{document}</tex-math></inline-formula> are main ingredients of the formula. The operators are defined by an algorithm that can be applied for any <inline-formula><tex-math id="M11">\begin{document}$ r $\end{document}</tex-math></inline-formula> although the volume of calculations grows fast with <inline-formula><tex-math id="M12">\begin{document}$ r $\end{document}</tex-math></inline-formula>. The algorithm is realized for small values of <inline-formula><tex-math id="M13">\begin{document}$ r $\end{document}</tex-math></inline-formula> and Reshetnyak formulas of orders <inline-formula><tex-math id="M14">\begin{document}$ 0,1,2 $\end{document}</tex-math></inline-formula> are presented in an explicit form.</p>


1957 ◽  
Vol 11 ◽  
pp. 111-114 ◽  
Author(s):  
Katsumi Nomizu

We have proved in [2] that if the restricted homogeneous holonomy group of a complete Riemannian manifold is contained in the linear isotropy group at every point, then the Riemannian manifold is locally symmetric, that is, the covariant derivatives of the curvature tensor field are zero. The proof of this theorem, however, depended on an insufficiently stated proposition (Theorem 1, [2]). In the present note, we shall give a proof of a more general theorem of the same type.


1990 ◽  
Vol 05 (11) ◽  
pp. 2145-2154
Author(s):  
DEBASHIS GANGOPADHYAY

Using the functional stochastic scheme, the gauge fixing term for linearized gravity is shown to be related to longitudinal modes within the framework of the usual set of momentum projection operators. A similar analysis is done for non-Abelian antisymmetric tensor field by replacing derivatives with covariant derivatives in all relevant equations and by constructing suitable operators for projecting out transverse and longitudinal modes.


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4865-4873 ◽  
Author(s):  
Milos Petrovic

Generalized m-parabolic K?hler manifolds are defined and holomorphically projective mappings between such manifolds have been considered. Two non-linear systems of PDE?s in covariant derivatives of the first and second kind for the existence of such mappings are given. Also, relations between five linearly independent curvature tensors of generalized m-parabolic K?hler manifolds with respect to these mappings are examined.


Author(s):  
Michael Kachelriess

This chapter introduces tensor fields, covariant derivatives and the geodesic equation on a (pseudo-) Riemannian manifold. It discusses how symmetries of a general space-time can be found from the Killing equation, and how the existence of Killing vector fields is connected to global conservation laws.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 830
Author(s):  
Evgeniya V. Goloveshkina ◽  
Leonid M. Zubov

The concept of a spherically symmetric second-rank tensor field is formulated. A general representation of such a tensor field is derived. Results related to tensor analysis of spherically symmetric fields and their geometric properties are presented. Using these results, a formulation of the spherically symmetric problem of the nonlinear theory of dislocations is given. For an isotropic nonlinear elastic material with an arbitrary spherically symmetric distribution of dislocations, this problem is reduced to a nonlinear boundary value problem for a system of ordinary differential equations. In the case of an incompressible isotropic material and a spherically symmetric distribution of screw dislocations in the radial direction, an exact analytical solution is found for the equilibrium of a hollow sphere loaded from the outside and from the inside by hydrostatic pressures. This solution is suitable for any models of an isotropic incompressible body, i. e., universal in the specified class of materials. Based on the obtained solution, numerical calculations on the effect of dislocations on the stress state of an elastic hollow sphere at large deformations are carried out.


1987 ◽  
Vol 29 (2) ◽  
pp. 185-196 ◽  
Author(s):  
P. G. Appleby ◽  
B. R. Duffy ◽  
R. W. Ogden

A tensor is said to be isotropic relative to a group of transformations if its components are invariant under the associated group of coordinate transformations. In this paper we review the classification of tensors which are isotropic under the general linear group, the special linear (unimodular) group and the rotational group. These correspond respectively to isotropic absolute tensors [4, 8] isotropic relative tensors [4] and isotropic Cartesian tensors [3]. New proofs are given for the representation of isotropic tensors in terms of Kronecker deltas and alternating tensors. And, for isotropic Cartesian tensors, we provide a complete classification, clarifying results described in [3].In the final section of the paper certain derivatives of isotropic tensor fields are examined.


Author(s):  
Charles Fefferman ◽  
C. Robin Graham

This chapter studies conformal curvature tensors of a pseudo-Riemannian metric g. These are defined in terms of the covariant derivatives of the curvature tensor of an ambient metric in normal form relative to g. Their transformation laws under conformal change are given in terms of the action of a subgroup of the conformal group O(p + 1, q + 1) on tensors. It is assumed throughout this chapter that n ≥ 3.


Sign in / Sign up

Export Citation Format

Share Document