scholarly journals Non-perturbative determination of improvement b-coefficients in Nf = 3

2018 ◽  
Vol 175 ◽  
pp. 10008 ◽  
Author(s):  
Giulia Maria de Divitiis ◽  
Maurizio Firrotta ◽  
Jochen Heitger ◽  
Carl Christian Köster ◽  
Anastassios Vladikas

We present our preliminary results of the non-perturbative determination of the valence mass dependent coefficients bA - bP and bm as well as the ratio ZPZm=ZA entering the flavour non-singlet PCAC relation in lattice QCD with Nf = 3 dynamical flavours. We apply the method proposed in the past for quenched approximation and Nf = 2 cases, employing a set of finite-volume ALPHA configurations with Schrödinger functional boundary conditions, generated with O(a) improved Wilson fermions and the tree-level Symanzik-improved gauge action for a range of couplings relevant for simulations at lattice spacings of about 0.09 fm and below.

2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Jochen Heitger ◽  
Fabian Joswig ◽  
Anastassios Vladikas

Abstract We derive chiral Ward identities for lattice QCD with Wilson quarks and $$N_{\mathrm{f}}\ge 3$$Nf≥3 flavours, on small lattices with Schrödinger functional boundary conditions and vanishingly small quark masses. These identities relate the axial variation of the non-singlet pseudoscalar density to the scalar one, thus enabling the non-perturbative determination of the scale-independent ratio $$Z_{\mathrm {S}}/Z_{\mathrm {P}}$$ZS/ZP of the renormalisation parameters of these operators. We obtain results for $$N_{\mathrm{f}}=3$$Nf=3 QCD with tree-level Symanzik-improved gluons and Wilson-Clover quarks, for bare gauge couplings which cover the typical range of large-volume $$N_{\mathrm{f}}= 2+1$$Nf=2+1 simulations with Wilson fermions at lattice spacings below $$0.1\,$$0.1fm. The precision of our results varies from 0.3 to 1%, except for the coarsest lattice, where it is 2%. We discuss how the $$Z_{\mathrm {S}}/Z_{\mathrm {P}}$$ZS/ZP ratio can be used in the non-perturbative calculations of $${\mathrm {O}}(a)$$O(a) improved renormalised quark masses.


2014 ◽  
Author(s):  
Christian Wittemeier ◽  
Michele Della Morte ◽  
John Bulava ◽  
Jochen Heitger

2018 ◽  
Vol 175 ◽  
pp. 10004 ◽  
Author(s):  
Jochen Heitger ◽  
Fabian Joswig ◽  
Anastassios Vladikas ◽  
Christian Wittemeier

We report on non-perturbative computations of the improvement coefficient cV and the renormalization factor ZV of the vector current in three-flavour O(a) improved lattice QCD with Wilson quarks and tree-level Symanzik improved gauge action. To reduce finite quark mass effects, our improvement and normalization conditions exploit massive chiral Ward identities formulated in the Schrödinger functional setup, which also allow deriving a new method to extract the ratio ZS/ZP of scalar to pseudoscalar renormalization constants. We present preliminary results of a numerical evaluation of ZV and cV along a line of constant physics with gauge couplings corresponding to lattice spacings of about 0:09 fm and below, relevant for phenomenological applications.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 330
Author(s):  
Gennaro Infante

We discuss the solvability of a fairly general class of systems of perturbed Hammerstein integral equations with functional terms that depend on several parameters. The nonlinearities and the functionals are allowed to depend on the components of the system and their derivatives. The results are applicable to systems of nonlocal second order ordinary differential equations subject to functional boundary conditions, this is illustrated in an example. Our approach is based on the classical fixed point index.


2015 ◽  
Vol 896 ◽  
pp. 555-568 ◽  
Author(s):  
John Bulava ◽  
Michele Della Morte ◽  
Jochen Heitger ◽  
Christian Wittemeier

Sign in / Sign up

Export Citation Format

Share Document