scholarly journals Study of mixed phase clouds over west Africa: Ice-crystal corner reflection effects observed with a two-wavelength polarization lidar

2018 ◽  
Vol 176 ◽  
pp. 05004
Author(s):  
Igor Veselovskii ◽  
Philippe Goloub ◽  
Thierry Podvin ◽  
Didier Tanre ◽  
Albert Ansmann ◽  
...  

Lidar sounding is used for the analysis of possible contribution of the corner reflection (CR) effect to the total backscattering in case of ice crystals. Our study is based on observations of mixed phase clouds performed during the SHADOW campaign in Senegal. Mie-Raman lidar allows measurements at 355 nm and 532 nm at 43 dg. off-zenith angle, so the extinction and backscattering Ångström exponents can be evaluated. In some measurements we observed the positive values of backscattering Ångström exponent, which can be attributed to the corner reflection by horizontally oriented ice plates.

2020 ◽  
Vol 77 (6) ◽  
pp. 2279-2296
Author(s):  
Fabian Hoffmann

Abstract The growth of ice crystals at the expense of water droplets, the Wegener–Bergeron–Findeisen (WBF) process, is of major importance for the production of precipitation in mixed-phase clouds. The effects of entrainment and mixing on WBF, however, are not well understood, and small-scale inhomogeneities in the thermodynamic and hydrometeor fields are typically neglected in current models. By applying the linear eddy model, a millimeter-resolution representation of turbulent deformation and molecular diffusion, we investigate these small-scale effects on WBF. While we show that entrainment is accelerating WBF by contributing to the evaporation of liquid droplets, entrainment may also cause aforementioned inhomogeneities, particularly regions filled with exclusively ice or liquid hydrometeors, which tend to decelerate WBF if the ice crystal concentration exceeds 100 L−1. At lower ice crystal concentrations, even weak turbulence can homogenize hydrometeor and thermodynamic fields sufficiently fast so as to not affect WBF. Independent of the ice crystal concentration, it is shown that a fully resolved entrainment and mixing process may delay the nucleation of entrained aerosols to ice crystals, thereby delaying the uptake of water vapor by the ice phase, further slowing down WBF. All in all, this study indicates that, under specific conditions, small-scale inhomogeneities associated with entrainment and mixing counteract the accelerated WBF in entraining clouds. However, further research is required to assess the importance of the newly discovered processes more broadly in fully coupled, evolving mixed-phase cloud systems.


2018 ◽  
Vol 11 (10) ◽  
pp. 4021-4041 ◽  
Author(s):  
Sara Bacer ◽  
Sylvia C. Sullivan ◽  
Vlassis A. Karydis ◽  
Donifan Barahona ◽  
Martina Krämer ◽  
...  

Abstract. A comprehensive ice nucleation parameterization has been implemented in the global chemistry-climate model EMAC to improve the representation of ice crystal number concentrations (ICNCs). The parameterization of Barahona and Nenes (2009, hereafter BN09) allows for the treatment of ice nucleation taking into account the competition for water vapour between homogeneous and heterogeneous nucleation in cirrus clouds. Furthermore, the influence of chemically heterogeneous, polydisperse aerosols is considered by applying one of the multiple ice nucleating particle parameterizations which are included in BN09 to compute the heterogeneously formed ice crystals. BN09 has been modified in order to consider the pre-existing ice crystal effect and implemented to operate both in the cirrus and in the mixed-phase regimes. Compared to the standard EMAC parameterizations, BN09 produces fewer ice crystals in the upper troposphere but higher ICNCs in the middle troposphere, especially in the Northern Hemisphere where ice nucleating mineral dust particles are relatively abundant. Overall, ICNCs agree well with the observations, especially in cold cirrus clouds (at temperatures below 205 K), although they are underestimated between 200 and 220 K. As BN09 takes into account processes which were previously neglected by the standard version of the model, it is recommended for future EMAC simulations.


2016 ◽  
Author(s):  
I. Veselovskii ◽  
P. Goloub ◽  
T. Podvin ◽  
V. Bovchaliuk ◽  
Y. Derimian ◽  
...  

Abstract. West Africa and the adjacent oceanic regions are very important locations for studying dust properties and their influence on weather and climate. The SHADOW (Study of SaHAran Dust Over West Africa) campaign is performing a multi-scale and multi-laboratory study of aerosol properties and dynamics using a set of in situ and remote sensing instruments at an observation site located at IRD (Institute for Research and Development) Center, Mbour, Senegal (14° N, 17° W). In this paper, we present the results of lidar measurements performed during the first phase of SHADOW which occurred in March-April, 2015. The multiwavelength Mie-Raman lidar acquired 3β + 2α + 1δ measurements during this period. This set of measurements has permitted particle intensive properties such as extinction and backscattering Ångström exponents (BAE) for 355/532 nm wavelengths corresponding lidar ratios and depolarization ratio at 532 nm to be determined. The mean values of dust lidar ratios during the observation period were about 53 sr at both 532 nm and 355 nm, which agrees with the values observed during the SAMUM 1 and SAMUM 2 campaigns held in Morocco and Cape Verde in 2006, 2008. The mean value of particle depolarization ratio at 532 nm was 30 ± 4.5 %, however during strong dust episodes this ratio increased to 35 ± 5 %, which is also in agreement with the results of the SAMUM campaigns. The backscattering Ångström exponent during the dust episodes decreased to ~ −0.7, while the extinction Ångström exponent though being negative, was greater than −0.2. Low values of BAE can likely be explained by an increase in the imaginary part of the dust refractive index at 355 nm compared to 532 nm. The dust extinction and backscattering coefficients at multiple wavelengths were inverted to the particle microphysics using the regularization algorithm and the model of randomly oriented spheroids. The analysis performed has demonstrated that the spectral dependence of the imaginary part of the dust refractive index may significantly influence the inversion results and should be taken into account.


2018 ◽  
Author(s):  
Sara Bacer ◽  
Sylvia C. Sullivan ◽  
Vlassis A. Karydis ◽  
Donifan Barahona ◽  
Martina Krämer ◽  
...  

Abstract. A comprehensive ice nucleation parameterization has been implemented in the global chemistry-climate model EMAC to realistically represent ice crystal number concentrations. The parameterization of Barahona and Nenes (2009, hereafter BN09) allows the treatment of ice nucleation, taking into account the competition for water vapour between homogeneous and heterogeneous nucleation and pre-existing ice crystals in cold clouds. Furthermore, the influence of chemically-heterogeneous, polydisperse aerosols is considered via multiple ice nucleating particle spectra, which are included in the parameterization to compute the heterogeneously formed ice crystals. BN09 has been implemented to operate both in the cirrus and in the mixed-phase regimes. Compared to the standard EMAC results, BN09 produces fewer ice crystals in the upper troposphere but higher ice crystal number concentrations in the middle troposphere, especially in the Northern Hemisphere where ice nucleating mineral dust particles are relatively abundant. The comparison with a climatological data set of aircraft measurements shows that BN09 used in the cirrus regime improves the model results and, therefore, is recommended for future EMAC simulations.


2017 ◽  
Author(s):  
Guillaume Mioche ◽  
Olivier Jourdan ◽  
Julien Delanoë ◽  
Christophe Gourbeyre ◽  
Guy Febvre ◽  
...  

Abstract. This study aims to characterize the microphysical and optical properties of ice crystals and supercooled liquid droplets within low-level Arctic mixed-phase clouds (MPC). We compiled and analyzed cloud in situ measurements from 4 airborne campaigns (18 flights, 71 vertical profiles in MPC) over the Greenland Sea and the Svalbard region. Cloud phase discrimination and representative vertical profiles of number, size, mass and shapes of ice crystals and liquid droplets are assessed. The results show that the liquid phase dominates the upper part of the MPC with high concentration of small droplets (120 cm−3, 15&tinsp;μm), and averaged LWC around 0.2 g m−3. The ice phase is found everywhere within the MPC layers, but dominates the properties in the lower part of the cloud and below where ice crystals precipitate down to the surface. The analysis of the ice crystal morphology highlights that irregulars and rimed are the main particle habit followed by stellars and plates. We hypothesize that riming and condensational growth processes (including the Wegener-Bergeron-Findeisein mechanism) are the main growth mechanisms involved in MPC. The differences observed in the vertical profiles of MPC properties from one campaign to another highlight that large values of LWC and high concentration of smaller droplets are possibly linked to polluted situations which lead to very low values of ice crystal size and IWC. On the contrary, clean situations with low temperatures exhibit larger values of ice crystal size and IWC. Several parameterizations relevant for remote sensing or modeling are also determined, such as IWC (and LWC) – extinction relationship, ice and liquid integrated water paths, ice concentration and liquid water fraction according to temperature. Finally, 4 flights collocated with active remote sensing observations from CALIPSO and CloudSat satellites are specifically analyzed to evaluate the cloud detection and cloud thermodynamical phase DARDAR retrievals. This comparison is valuable to assess the sub-pixel variability of the satellite measurements as well as their shortcomings/performance near the ground.


2020 ◽  
Vol 12 (13) ◽  
pp. 2094
Author(s):  
Chong Cheng ◽  
Fan Yi

Falling mixed-phase virga from a thin supercooled liquid layer cloud base were observed on 20 occasions at altitudes of 2.3–9.4 km with ground-based lidars at Wuhan (30.5 °N, 114.4 °E), China. Polarization lidar profile (3.75-m) analysis reveals some ubiquitous features of both falling mixed-phase virga and their liquid parent cloud layers. Each liquid parent cloud had a well-defined base height where the backscatter ratio R was ~7.0 and the R profile had a clear inflection point. At an altitude of ~34 m above the base height, the depolarization ratio reached its minimum value (~0.04), indicating a liquid-only level therein. The thin parent cloud layers tended to form on the top of a broad preexisting aerosol/liquid water layer. The falling virga below the base height showed firstly a significant depolarization ratio increase, suggesting that most supercooled liquid drops in the virga were rapidly frozen into ice crystals (via contact freezing). After reaching a local maximum value of the depolarization ratio, both the values of the backscatter ratio and depolarization ratio for the virga exhibited an overall decrease with decreasing height, indicating sublimated ice crystals. The diameters of the ice crystals in the virga were estimated based on an ice particle sublimation model along with the lidar and radiosonde observations. It was found that the ice crystal particles in these virga cases tended to have smaller mean diameters and narrower size distributions with increasing altitude. The mean diameter value is 350 ± 111 µm at altitudes of 4–8.5 km.


2017 ◽  
Author(s):  
Julian Hofer ◽  
Dietrich Althausen ◽  
Sabur F. Abdullaev ◽  
Abduvosit N. Makhmudov ◽  
Bakhron I. Nazarov ◽  
...  

Abstract. For the first time, continuous vertically resolved aerosol measurements were performed by lidar in Tajikistan, Central Asia. Observations with the multiwavelength polarization/Raman lidar PollyXT were conducted during CADEX (Central Asian Dust EXperiment) in Dushanbe, Tajikistan, from March 2015 to August 2016. Co-located with the lidar a sun photometer was operated. The goal of CADEX is to provide an unprecedented data set on vertically resolved aerosol optical properties in Central Asia, an area highly affected by climate change but largely missing vertically resolved aerosol measurements. During the 18-months measurement campaign, mineral dust was detected frequently from ground to cirrus level height. In this study, an overview of the measurement period is given and four typical but different example measurement cases are discussed in detail. Three of them are dust cases and one is a contrasting pollution aerosol case. Vertical profiles of the measured optical properties and the calculated dust and non-dust mass concentrations are presented. Dust source regions were identified by means of backward trajectory analyses. A lofted layer of Middle Eastern dust with an aerosol optical thickness (AOT) of 0.4 and an extinction-related Ångström exponent of 0.41 was measured. In comparison, two near-ground dust cases have Central Asian sources. One is an extreme dust event with an AOT of 1.5 and Ångström exponent of 0.12 and the other one is a most extreme dust event with an AOT of above 4 (measured by sun photometer) and an Ångström exponent of −0.08. The observed lidar ratios (particle linear depolarization ratios) in the presented dust cases range from 40.3 sr to 46.9 sr (0.18–0.29) at 355 nm and from 35.7 sr to 42.9 sr (0.31–0.35) at 532 nm wavelength. The particle linear depolarization ratios indicate almost unpolluted dust in the case of a lofted dust layer and pure dust in the near-ground dust cases. The lidar ratio values are lower than typical lidar ratio values for Saharan dust (50–60 sr) and comparable to Middle Eastern/West-Asian dust lidar ratios (35–45 sr). In contrast, the presented case of pollution aerosol of local origin has an Ångström exponent of 2.07 and a lidar ratio (particle linear depolarization ratio) of 55.8 sr (0.03) at 355 nm and 32.8 sr (0.08) at 532 nm wavelength.


2012 ◽  
Vol 12 (19) ◽  
pp. 8963-8977 ◽  
Author(s):  
G. Febvre ◽  
J.-F. Gayet ◽  
V. Shcherbakov ◽  
C. Gourbeyre ◽  
O. Jourdan

Abstract. In this paper, we show that in mixed phase clouds, the presence of ice crystals may induce wrong FSSP 100 measurements interpretation especially in terms of particle size and subsequent bulk parameters. The presence of ice crystals is generally revealed by a bimodal feature of the particle size distribution (PSD). The combined measurements of the FSSP-100 and the Polar Nephelometer give a coherent description of the effect of the ice crystals on the FSSP-100 response. The FSSP-100 particle size distributions are characterized by a bimodal shape with a second mode peaked between 25 and 35 μm related to ice crystals. This feature is observed with the FSSP-100 at airspeed up to 200 m s−1 and with the FSSP-300 series. In order to assess the size calibration for clouds of ice crystals the response of the FSSP-100 probe has been numerically simulated using a light scattering model of randomly oriented hexagonal ice particles and assuming both smooth and rough crystal surfaces. The results suggest that the second mode, measured between 25 μm and 35 μm, does not necessarily represent true size responses but corresponds to bigger aspherical ice particles. According to simulation results, the sizing understatement would be neglected in the rough case but would be significant with the smooth case. Qualitatively, the Polar Nephelometer phase function suggests that the rough case is the more suitable to describe real crystals. Quantitatively, however, it is difficult to conclude. A review is made to explore different hypotheses explaining the occurrence of the second mode. However, previous cloud in situ measurements suggest that the FSSP-100 secondary mode, peaked in the range 25–35 μm, is likely to be due to the shattering of large ice crystals on the probe inlet. This finding is supported by the rather good relationship between the concentration of particles larger than 20 μm (hypothesized to be ice shattered-fragments measured by the FSSP) and the concentration of (natural) ice particles (CPI data). In mixed cloud, a simple estimation of the number of ice crystals impacting the FSSP inlet shows that the ice crystal shattering effect is the main factor in observed ice production.


Sign in / Sign up

Export Citation Format

Share Document