scholarly journals Large Deformation Behavior of High Strength Steel Under Extreme Loading Conditions: High Temperature and High Strain Rate Experiments and Modeling

2018 ◽  
Vol 183 ◽  
pp. 01053
Author(s):  
Xueyang Li ◽  
Christian C. Roth ◽  
Dirk Mohr

Plasticity and fracture experiments are carried out on flat smooth and notched tensile specimens extracted from DP800 steel sheets. A split Hopkinson pressure bar testing system equipped with a load inversion device is utilized to reach high strain rates. Temperature dependent experiments ranging from 20°C to 300°C are performed at quasi-static strain rates. The material exposes a monotonic strain hardening behaviour with a non-monotonic temperature dependency. The rate-independent material behaviour at room-temperature is described with a non-associated Hill’48 plasticity model and an Swift-Voce strain hardening. A machine learning based model is used multiplicatively to capture the rate and temperature responses. A good agreement between measured and simulated force-displacement curves as well as local surface is obtained. The loading paths to fracture are then extracted to facilitate further development of a temperature dependent fracture initiation model.

2013 ◽  
Vol 631-632 ◽  
pp. 458-462 ◽  
Author(s):  
Peng Duo Zhao ◽  
Yu Wang ◽  
Jian Ye Du ◽  
Lei Zhang ◽  
Zhi Peng Du ◽  
...  

The strain rate sensitivity of neoprene is characterized using a modified split Hopkinson pressure bar (SHPB) system at intermediate (50 s-1, 100 s-1) and high (500 s-1, 1000 s-1) strain rates. We used two quartz piezoelectric force transducers that were sandwiched between the specimen and experimental bars respectively to directly measure the weak wave signals. A laser gap gage was employed to monitor the deformation of the sample directly. Three kinds of neoprene rubbers (Shore hardness: SHA60, SHA65, and SHA70) were tested using the modified split Hopkinson pressure bar. Experimental results show that the modified apparatus is effective and reliable for determining the compressive stress-strain responses of neoprene at intermediate and high strain rates.


2014 ◽  
Vol 660 ◽  
pp. 562-566 ◽  
Author(s):  
Akbar Afdhal ◽  
Leonardo Gunawan ◽  
Sigit P. Santosa ◽  
Ichsan Setya Putra ◽  
Hoon Huh

The dynamic mechanical properties of a material are important keys to investigate the impact characteristic of a structure such as a crash box. For some materials, the stress-strain relationships at high strain rate loadings are different than that at the static condition. These mechanical properties depend on the strain rate of the loadings, and hence an appropriate testing technique is required to measure them. To measure the mechanical properties of a material at high strain rates, ranging from 500 s-1 to 10000 s-1, a Split Hopkinson Pressure Bar is commonly used. In the measurements, strain pulses are generated in the bars system, and pulses being reflected and transmitted by a test specimen in the bar system are measured. The stress-strain curves as the material properties of the test specimen are obtained by processing the measured reflected and transmitted pulses. This paper presents the measurements of the mechanical properties of St 37 mild steel at several strain rates using a Split Hopkinson Pressure Bar. The stress-strain curves obtained in the measurement were curve fitted using the Power Law. The results show that the strength of St 37 material increases as the strain rate increases.


2016 ◽  
Vol 849 ◽  
pp. 266-270 ◽  
Author(s):  
Yang Yu ◽  
Qi Gao ◽  
Xun Jun Mi ◽  
Song Xiao Hui ◽  
Wen Jun Ye

Deformation and fracture behaviors of Ti-6Al-4V-0.1B alloy with Widmanstätten, equiaxed and bimodal microstructures were investigated by Split Hopkinson Pressure Bar (SHPB) under high strain rates of 2100-3200 s-1. The results showed that the equiaxed and bimodal structures had a higher bearing capacity at high strain rates than that of the Widmanstätten structure. With the same microstructure, the increase of strain rate gave rise to an improved uniform plastic deformation. According to an observation on the deformed microstructure, it was found that adiabatic shear behavior was the main reason for failure and fracture of the alloy. The formation and propagation of adiabatic shear bands (ASBs) was the precursor for the failure and fracture of the material. Cavities at the interface between TiB phase and the matrix readily formed due to the uncoordinated deformation, which are not the dominate reason for the failure and fracture.


2006 ◽  
Author(s):  
Glenn E. Vallee ◽  
Steven D. Army

An effective, low cost method of determining the temperature dependent dynamic response of elastomeric materials at high strain rates using the Split Hopkinson Pressure Bar (SHPB) is developed. The test system allows the determination of the dynamic modulus at temperatures up to 150°C with control of specimen temperature within ± 3°C without the use of specialized equipment or cumbersome heating and positioning fixtures often required for temperature dependent testing. The test specimen is heated using a low cost electric resistance tape, which heats the transmitter and incident bars adjacent to the specimen. A finite element analysis is performed to predict the temperature vs. time response of the test specimen, which is verified using a simple thermocouple arrangement. The dynamic stress-strain response of a nitrile elastomer, commonly used as an impact absorber, is investigated over temperatures ranging from 20°C to 110°C at strain rates between 3000/s and 3500/s. The effect of strain rate on the dynamic modulus is not significant, but the effect of temperature is dramatic. The dynamic modulus of the nitrile is reduced by more than 60% at 110°C.


2013 ◽  
Vol 535-536 ◽  
pp. 497-500 ◽  
Author(s):  
Zhi Wu Zhu ◽  
Guo Zheng Kang ◽  
Dong Ruan ◽  
Yue Ma ◽  
Guo Xing Lu

5083 aluminum alloy was investigated with respect to its uniaxial dynamic compressive properties over a range of strain rates using the split Hopkinson pressure bar (SHPB). The dynamic stress-strain curves of this alloy were obtained for strain rates from 1000 s-1 to 6000 s-1. Effects of strain rate, the samples size and anti-impact capability were analyzed. The experimental results show that under impaction loading, 5083 aluminum alloy has a remarkable strengthening response to strain rate and size; in particular, the responded stress increases with increasing strain rate, which implies that this alloy has high strength and high anti-impact capability.


2021 ◽  
Vol 6 (3) ◽  
pp. 53-57
Author(s):  
Ahmad R. Aljohani ◽  
Ramzi Othman ◽  
Khalid H. Almitani

In this work, a one-dimensional simplified model was developed to predict stress, strain, and strain-rate in high strain rates Hopkinson pressure bar experiments, namely, between 500-5000/s. To this goal, a one-dimensional model for Hokinson bar tests was developed based on analyses of wave propagation in bars and assuming the specimen is under equilibrium during the test. The numerical tool implemented using Matlab and validated regarding experimental data. This new model will be very helpful in designing the specimens for split Hopkinson bar tests and also in the interpretation of the experimental raw data.


Sign in / Sign up

Export Citation Format

Share Document