scholarly journals Possibility to use of the Fe3O4/Ta2O5 core-shell nanoparticles in radiotherapy

2018 ◽  
Vol 185 ◽  
pp. 10008
Author(s):  
Kseniya Lukyanenko ◽  
Leonid Afremov ◽  
Vladimir Apanasevich ◽  
Mariya Shmykova ◽  
Mikhail Medkov ◽  
...  

The study was carried out of the possibility of using magnetic core-shell nanoparticles Fe3O4/Ta2O5 as a radio-modifier. It is investigated the influence of the inhomogeneous magnetic field on the distribution of the nanoparticles in the region of its maximum inhomogeneity. The increase of the core-shell nanoparticles’ concentration leads to the increase of the number of 511keV gamma-quanta. The absorption of gamma-quanta with lower energy (20-200 keV) increases with increase in concentration of nanoparticles.

2018 ◽  
Vol 386 ◽  
pp. 156-160
Author(s):  
Ksenya Sergeevna Lukуanenko ◽  
Vladimir Iosifovich Apanasevich ◽  
Leonid Lazarevich Afremov ◽  
Olga Vycheslavovna Tarakova ◽  
Olga Sergeevna Plotnikova ◽  
...  

The possibility of application of magnetic core-shell Fe3O4/Ta2O5nanoparticles has been investigated in order to enhance the effect of radiation therapy. It has been shown, that an increase of the concentration of the core-shell nanoparticles due to the influence of the nonuniform magnetic field enhances the absorption of gamma quanta with energy destroying tumor cells (20-200 keV). In addition, an increase of nanoparticles concentration promotes the formation of electron-positron pairs, annihilation of which are leads to an increase in the number of secondary gamma quanta with an energy of 511 keV.


2003 ◽  
Vol 774 ◽  
Author(s):  
Jiye Fang ◽  
Jibao He ◽  
Eun Young Shin ◽  
Deborah Grimm ◽  
Charles J. O'Connor ◽  
...  

Abstractγ-Fe2O3@Au core-shell nanoparticles were prepared through a combined route, in which high temperature organic solution synthesis and colloidal microemulsion techniques were successively applied. High magnification of TEM reveals the core-shell structure. The presence of Au on the surface of as-prepared particles is also confirmed by UV-Vis absorption. The magnetic core-shell nanoparticles offer a promising application in bio- and medical systems.


RSC Advances ◽  
2020 ◽  
Vol 10 (64) ◽  
pp. 38818-38830
Author(s):  
Tammar Hussein Ali ◽  
Amar Mousa Mandal ◽  
Thorsten Heidelberg ◽  
Rusnah Syahila Duali Hussen ◽  
Ean Wai Goh

The fabrication ionic magnetic core-shell nanoparticles were simple synthesize with a super-ferromagnetic and small particle size properties, which enabled sufficient DNA particle loading with easy isolation based on an external magnetic field.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
H. Rajabi-Moghaddam ◽  
M. R. Naimi-Jamal ◽  
M. Tajbakhsh

AbstractIn the present work, an attempt has been made to synthesize the 1,2,3-triazole derivatives resulting from the click reaction, in a mild and green environment using the new copper(II)-coated magnetic core–shell nanoparticles Fe3O4@SiO2 modified by isatoic anhydride. The structure of the catalyst has been determined by XRD, FE-SEM, TGA, VSM, EDS, and FT-IR analyzes. The high efficiency and the ability to be recovered and reused for at least up to 6 consecutive runs are some superior properties of the catalyst.


2021 ◽  
Author(s):  
Mohd Imran ◽  
Nasser Zouli ◽  
Tansir Ahamad ◽  
Saad M. Alshehri ◽  
Mohammed Rehaan Chandan ◽  
...  

Ferrofluids prepared by dispersing superparamagnetic Fe3O4@C core–shell nanoparticles in water exhibited exceptional enhancement in thermal conductivity without an external magnetic field.


Nanoscale ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 4519-4529
Author(s):  
J. Mohapatra ◽  
J. Elkins ◽  
M. Xing ◽  
D. Guragain ◽  
Sanjay R. Mishra ◽  
...  

Self-assembly of nanoparticles into ordered patterns is a novel approach to build up new consolidated materials with desired collective physical properties.


BIOspektrum ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 442-444
Author(s):  
Frank Mickoleit ◽  
Sabine Rosenfeldt ◽  
Anna S. Schenk ◽  
Dirk Schüler ◽  
René Uebe

AbstractBacterial magnetosomes represent magnetic core-shell nanoparticles biomineralized by magnetotactic bacteria like Magnetospirillum gryphiswaldense. The establishment of fermentation regimes for high-yield particle production, standardized isolation procedures as well as the development of a genetic toolkit for the generation of “tailored” particles might soon pave the way for the application of engineered magnetosomes in the biomedical and biotechnological field.


2019 ◽  
Vol 223 ◽  
pp. 68-74 ◽  
Author(s):  
Angela M. Gutierrez ◽  
Rohit Bhandari ◽  
Jiaying Weng ◽  
Arnold Stromberg ◽  
Thomas D. Dziubla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document