scholarly journals The role of isospin filtering reactions in the S = −1 sector

2019 ◽  
Vol 199 ◽  
pp. 03008
Author(s):  
A. Feijoo ◽  
V.K. Magas ◽  
A. Ramos

The present study reveals interesting constraining effects of isospin filtering reactions on the low energy constants present in meson-baryon chiral effective Lagrangian, particularly, on the next-to-leading order constants. Our model has been developed within the framework of Unitarized Chiral Perturbation Theory and has been fitted to two-body scattering data in the sector of S = −1. In addition, the model was further elaborated by means of the inclusion of high-spin hyperonic resonances.

2020 ◽  
Vol 102 (9) ◽  
Author(s):  
Qin-He Yang ◽  
Wei Guo ◽  
Feng-Jun Ge ◽  
Bo Huang ◽  
Hao Liu ◽  
...  

1992 ◽  
Vol 07 (29) ◽  
pp. 7305-7338 ◽  
Author(s):  
A.N. IVANOV ◽  
M. NAGY ◽  
N.I. TROITSKAYA

The chiral perturbation theory is developed at the quark level within the extended Nambu-Jona-Lasinio model, which we used for the low-energy approximation of QCD in the leading order of the large N expansion. In terms of constituent-quark loop diagrams we analyze all of the main low-energy effects caused by the first order corrections in the current-quark-mass expansions. For the correct description of the η→3π decays we confirm the important role of the final-state interaction quoted by Gasser and Leutwyler.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1262
Author(s):  
Nils Hermansson-Truedsson

Chiral perturbation theory is a much successful effective field theory of quantum chromodynamics at low energies. The effective Lagrangian is constructed systematically order by order in powers of the momentum p2, and until now the leading order (LO), next-to leading order (NLO), next-to-next-to leading order (NNLO) and next-to-next-to-next-to leading order (NNNLO) have been studied. In the following review we consider the construction of the Lagrangian and in particular focus on the NNNLO case. We in addition review and discuss the pion mass and decay constant at the same order, which are fundamental quantities to study for chiral perturbation theory. Due to the large number of terms in the Lagrangian and hence low energy constants arising at NNNLO, some remarks are made about the predictivity of this effective field theory.


Author(s):  
Alexander Andrianov ◽  
Vladimir Andrianov ◽  
Domenec Espriu

We compare Chiral Perturbation Theory (ChPT) and the Linear Sigma Model (LSM) as realizations of low energy QCD for light mesons in a chirally imbalanced medium. The relations between the low-energy constants of the Chiral Lagrangian and the corresponding constants of the Linear Sigma Model are established as well as the expressions for the decay constant of $\pi $-meson in the medium and for the mass of the $a_0$. In the large $N_c$ count taken from QCD the correspondence of ChPT and LSM is remarkably good and give a solid ground for search of chiral imbalance manifestation in pion physics. A possible experimental detection of chiral imbalance (and therefore a phase with Local Parity Breaking) is outlined in the charged pion decays inside the fireball.


2013 ◽  
Vol 88 (1) ◽  
Author(s):  
Szabolcs Borsányi ◽  
Stephan Dürr ◽  
Zoltán Fodor ◽  
Stefan Krieg ◽  
Andreas Schäfer ◽  
...  

2014 ◽  
Vol 35 ◽  
pp. 1460443
Author(s):  
DIOGO BOITO ◽  
MAARTEN GOLTERMAN ◽  
MATTHIAS JAMIN ◽  
KIM MALTMAN ◽  
SANTIAGO PERIS

We present an analysis of the isospin-one V – A correlator based on our successful simultaneous description of the OPAL V and A non-strange tau spectral data. We discuss the values obtained for the Chiral Perturbation Theory low-energy constants L10 and C87 as well as the dimension-six and eight condensates and compare them with those in the literature.


1993 ◽  
Vol 08 (18) ◽  
pp. 3045-3105 ◽  
Author(s):  
JOHAN BIJNENS

The application of chiral perturbation theory to low energy processes of abnormal intrinsic parity (anomalous) is discussed. The full infinite part at next-to-leading order is calculated. Estimates of the finite part of the effective Lagrangian from vector meson dominance and the chiral constituent quark model are obtained. This is then applied to decays of pseudoscalars to photon–photon and photon–three-pseudoscalar couplings.


Sign in / Sign up

Export Citation Format

Share Document